High-entropy dual functions over finite fields and locally decodable codes
Forum of Mathematics, Sigma, Tome 9 (2021)
Voir la notice de l'article provenant de la source Cambridge University Press
We show that for infinitely many primes p there exist dual functions of order k over ${\mathbb{F}}_p^n$ that cannot be approximated in $L_\infty $-distance by polynomial phase functions of degree $k-1$. This answers in the negative a natural finite-field analogue of a problem of Frantzikinakis on $L_\infty $-approximations of dual functions over ${\mathbb{N}}$ (a.k.a. multiple correlation sequences) by nilsequences.
@article{10_1017_fms_2021_1,
author = {Jop Bri\"et and Farrokh Labib},
title = {High-entropy dual functions over finite fields and locally decodable codes},
journal = {Forum of Mathematics, Sigma},
publisher = {mathdoc},
volume = {9},
year = {2021},
doi = {10.1017/fms.2021.1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2021.1/}
}
TY - JOUR AU - Jop Briët AU - Farrokh Labib TI - High-entropy dual functions over finite fields and locally decodable codes JO - Forum of Mathematics, Sigma PY - 2021 VL - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fms.2021.1/ DO - 10.1017/fms.2021.1 LA - en ID - 10_1017_fms_2021_1 ER -
Jop Briët; Farrokh Labib. High-entropy dual functions over finite fields and locally decodable codes. Forum of Mathematics, Sigma, Tome 9 (2021). doi: 10.1017/fms.2021.1
Cité par Sources :