$q$-DEFORMED RATIONALS AND $q$-CONTINUED FRACTIONS
Forum of Mathematics, Sigma, Tome 8 (2020)

Voir la notice de l'article provenant de la source Cambridge University Press

We introduce a notion of $q$-deformed rational numbers and $q$-deformed continued fractions. A $q$-deformed rational is encoded by a triangulation of a polygon and can be computed recursively. The recursive formula is analogous to the $q$-deformed Pascal identity for the Gaussian binomial coefficients, but the Pascal triangle is replaced by the Farey graph. The coefficients of the polynomials defining the $q$-rational count quiver subrepresentations of the maximal indecomposable representation of the graph dual to the triangulation. Several other properties, such as total positivity properties, $q$-deformation of the Farey graph, matrix presentations and $q$-continuants are given, as well as a relation to the Jones polynomial of rational knots.
@article{10_1017_fms_2020_9,
     author = {SOPHIE MORIER-GENOUD and VALENTIN OVSIENKO},
     title = {$q${-DEFORMED} {RATIONALS} {AND} $q${-CONTINUED} {FRACTIONS}},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {8},
     year = {2020},
     doi = {10.1017/fms.2020.9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2020.9/}
}
TY  - JOUR
AU  - SOPHIE MORIER-GENOUD
AU  - VALENTIN OVSIENKO
TI  - $q$-DEFORMED RATIONALS AND $q$-CONTINUED FRACTIONS
JO  - Forum of Mathematics, Sigma
PY  - 2020
VL  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2020.9/
DO  - 10.1017/fms.2020.9
LA  - en
ID  - 10_1017_fms_2020_9
ER  - 
%0 Journal Article
%A SOPHIE MORIER-GENOUD
%A VALENTIN OVSIENKO
%T $q$-DEFORMED RATIONALS AND $q$-CONTINUED FRACTIONS
%J Forum of Mathematics, Sigma
%D 2020
%V 8
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2020.9/
%R 10.1017/fms.2020.9
%G en
%F 10_1017_fms_2020_9
SOPHIE MORIER-GENOUD; VALENTIN OVSIENKO. $q$-DEFORMED RATIONALS AND $q$-CONTINUED FRACTIONS. Forum of Mathematics, Sigma, Tome 8 (2020). doi: 10.1017/fms.2020.9

Cité par Sources :