LONG TIME BEHAVIOR OF THE SOLUTIONS OF NLW ON THE $d$-DIMENSIONAL TORUS
Forum of Mathematics, Sigma, Tome 8 (2020)
Voir la notice de l'article provenant de la source Cambridge University Press
We consider the nonlinear wave equation (NLW) on the $d$-dimensional torus $\mathbb{T}^{d}$ with a smooth nonlinearity of order at least 2 at the origin. We prove that, for almost any mass, small and smooth solutions of high Sobolev indices are stable up to arbitrary long times with respect to the size of the initial data. To prove this result, we use a normal form transformation decomposing the dynamics into low and high frequencies with weak interactions. While the low part of the dynamics can be put under classical Birkhoff normal form, the high modes evolve according to a time-dependent linear Hamiltonian system. We then control the global dynamics by using polynomial growth estimates for high modes and the preservation of Sobolev norms for the low modes. Our general strategy applies to any semilinear Hamiltonian Partial Differential Equations (PDEs) whose linear frequencies satisfy a very general nonresonance condition. The (NLW) equation on $\mathbb{T}^{d}$ is a good example since the standard Birkhoff normal form applies only when $d=1$ while our strategy applies in any dimension.
@article{10_1017_fms_2020_8,
author = {JOACKIM BERNIER and ERWAN FAOU and BENO\^IT GR\'EBERT},
title = {LONG {TIME} {BEHAVIOR} {OF} {THE} {SOLUTIONS} {OF} {NLW} {ON} {THE} $d${-DIMENSIONAL} {TORUS}},
journal = {Forum of Mathematics, Sigma},
publisher = {mathdoc},
volume = {8},
year = {2020},
doi = {10.1017/fms.2020.8},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2020.8/}
}
TY - JOUR AU - JOACKIM BERNIER AU - ERWAN FAOU AU - BENOÎT GRÉBERT TI - LONG TIME BEHAVIOR OF THE SOLUTIONS OF NLW ON THE $d$-DIMENSIONAL TORUS JO - Forum of Mathematics, Sigma PY - 2020 VL - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fms.2020.8/ DO - 10.1017/fms.2020.8 LA - en ID - 10_1017_fms_2020_8 ER -
%0 Journal Article %A JOACKIM BERNIER %A ERWAN FAOU %A BENOÎT GRÉBERT %T LONG TIME BEHAVIOR OF THE SOLUTIONS OF NLW ON THE $d$-DIMENSIONAL TORUS %J Forum of Mathematics, Sigma %D 2020 %V 8 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1017/fms.2020.8/ %R 10.1017/fms.2020.8 %G en %F 10_1017_fms_2020_8
JOACKIM BERNIER; ERWAN FAOU; BENOÎT GRÉBERT. LONG TIME BEHAVIOR OF THE SOLUTIONS OF NLW ON THE $d$-DIMENSIONAL TORUS. Forum of Mathematics, Sigma, Tome 8 (2020). doi: 10.1017/fms.2020.8
Cité par Sources :