Log $\mathscr{D}$-modules and index theorems
Forum of Mathematics, Sigma, Tome 9 (2021)

Voir la notice de l'article provenant de la source Cambridge University Press

We study log $\mathscr {D}$-modules on smooth log pairs and construct a comparison theorem of log de Rham complexes. The proof uses Sabbah’s generalized b-functions. As applications, we deduce a log index theorem and a Riemann-Roch type formula for perverse sheaves on smooth quasi-projective varieties. The log index theorem naturally generalizes the Dubson-Kashiwara index theorem on smooth projective varieties.
@article{10_1017_fms_2020_62,
     author = {Lei Wu and Peng Zhou},
     title = {Log $\mathscr{D}$-modules and index theorems},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {9},
     year = {2021},
     doi = {10.1017/fms.2020.62},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2020.62/}
}
TY  - JOUR
AU  - Lei Wu
AU  - Peng Zhou
TI  - Log $\mathscr{D}$-modules and index theorems
JO  - Forum of Mathematics, Sigma
PY  - 2021
VL  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2020.62/
DO  - 10.1017/fms.2020.62
LA  - en
ID  - 10_1017_fms_2020_62
ER  - 
%0 Journal Article
%A Lei Wu
%A Peng Zhou
%T Log $\mathscr{D}$-modules and index theorems
%J Forum of Mathematics, Sigma
%D 2021
%V 9
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2020.62/
%R 10.1017/fms.2020.62
%G en
%F 10_1017_fms_2020_62
Lei Wu; Peng Zhou. Log $\mathscr{D}$-modules and index theorems. Forum of Mathematics, Sigma, Tome 9 (2021). doi: 10.1017/fms.2020.62

Cité par Sources :