Log $\mathscr{D}$-modules and index theorems
    
    
  
  
  
      
      
      
        
Forum of Mathematics, Sigma, Tome 9 (2021)
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Cambridge University Press
            
              We study log $\mathscr {D}$-modules on smooth log pairs and construct a comparison theorem of log de Rham complexes. The proof uses Sabbah’s generalized b-functions. As applications, we deduce a log index theorem and a Riemann-Roch type formula for perverse sheaves on smooth quasi-projective varieties. The log index theorem naturally generalizes the Dubson-Kashiwara index theorem on smooth projective varieties.
            
            
            
          
        
      @article{10_1017_fms_2020_62,
     author = {Lei Wu and Peng Zhou},
     title = {Log $\mathscr{D}$-modules and index theorems},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {9},
     year = {2021},
     doi = {10.1017/fms.2020.62},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2020.62/}
}
                      
                      
                    Lei Wu; Peng Zhou. Log $\mathscr{D}$-modules and index theorems. Forum of Mathematics, Sigma, Tome 9 (2021). doi: 10.1017/fms.2020.62
                  
                Cité par Sources :