Maps from Feigin and Odesskii's elliptic algebras to twisted homogeneous coordinate rings
Forum of Mathematics, Sigma, Tome 9 (2021)

Voir la notice de l'article provenant de la source Cambridge University Press

The elliptic algebras in the title are connected graded $\mathbb {C}$-algebras, denoted $Q_{n,k}(E,\tau )$, depending on a pair of relatively prime integers $n>k\ge 1$, an elliptic curve E and a point $\tau \in E$. This paper examines a canonical homomorphism from $Q_{n,k}(E,\tau )$ to the twisted homogeneous coordinate ring $B(X_{n/k},\sigma ',\mathcal {L}^{\prime }_{n/k})$ on the characteristic variety $X_{n/k}$ for $Q_{n,k}(E,\tau )$. When $X_{n/k}$ is isomorphic to $E^g$ or the symmetric power $S^gE$, we show that the homomorphism $Q_{n,k}(E,\tau ) \to B(X_{n/k},\sigma ',\mathcal {L}^{\prime }_{n/k})$ is surjective, the relations for $B(X_{n/k},\sigma ',\mathcal {L}^{\prime }_{n/k})$ are generated in degrees $\le 3$ and the noncommutative scheme $\mathrm {Proj}_{nc}(Q_{n,k}(E,\tau ))$ has a closed subvariety that is isomorphic to $E^g$ or $S^gE$, respectively. When $X_{n/k}=E^g$ and $\tau =0$, the results about $B(X_{n/k},\sigma ',\mathcal {L}^{\prime }_{n/k})$ show that the morphism $\Phi _{|\mathcal {L}_{n/k}|}:E^g \to \mathbb {P}^{n-1}$ embeds $E^g$ as a projectively normal subvariety that is a scheme-theoretic intersection of quadric and cubic hypersurfaces.
@article{10_1017_fms_2020_60,
     author = {Alex Chirvasitu and Ryo Kanda and S. Paul Smith},
     title = {Maps from {Feigin} and {Odesskii's} elliptic algebras to twisted homogeneous coordinate rings},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {9},
     year = {2021},
     doi = {10.1017/fms.2020.60},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2020.60/}
}
TY  - JOUR
AU  - Alex Chirvasitu
AU  - Ryo Kanda
AU  - S. Paul Smith
TI  - Maps from Feigin and Odesskii's elliptic algebras to twisted homogeneous coordinate rings
JO  - Forum of Mathematics, Sigma
PY  - 2021
VL  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2020.60/
DO  - 10.1017/fms.2020.60
LA  - en
ID  - 10_1017_fms_2020_60
ER  - 
%0 Journal Article
%A Alex Chirvasitu
%A Ryo Kanda
%A S. Paul Smith
%T Maps from Feigin and Odesskii's elliptic algebras to twisted homogeneous coordinate rings
%J Forum of Mathematics, Sigma
%D 2021
%V 9
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2020.60/
%R 10.1017/fms.2020.60
%G en
%F 10_1017_fms_2020_60
Alex Chirvasitu; Ryo Kanda; S. Paul Smith. Maps from Feigin and Odesskii's elliptic algebras to twisted homogeneous coordinate rings. Forum of Mathematics, Sigma, Tome 9 (2021). doi: 10.1017/fms.2020.60

Cité par Sources :