Maps from Feigin and Odesskii's elliptic algebras to twisted homogeneous coordinate rings
Forum of Mathematics, Sigma, Tome 9 (2021)
Voir la notice de l'article provenant de la source Cambridge University Press
The elliptic algebras in the title are connected graded $\mathbb {C}$-algebras, denoted $Q_{n,k}(E,\tau )$, depending on a pair of relatively prime integers $n>k\ge 1$, an elliptic curve E and a point $\tau \in E$. This paper examines a canonical homomorphism from $Q_{n,k}(E,\tau )$ to the twisted homogeneous coordinate ring $B(X_{n/k},\sigma ',\mathcal {L}^{\prime }_{n/k})$ on the characteristic variety $X_{n/k}$ for $Q_{n,k}(E,\tau )$. When $X_{n/k}$ is isomorphic to $E^g$ or the symmetric power $S^gE$, we show that the homomorphism $Q_{n,k}(E,\tau ) \to B(X_{n/k},\sigma ',\mathcal {L}^{\prime }_{n/k})$ is surjective, the relations for $B(X_{n/k},\sigma ',\mathcal {L}^{\prime }_{n/k})$ are generated in degrees $\le 3$ and the noncommutative scheme $\mathrm {Proj}_{nc}(Q_{n,k}(E,\tau ))$ has a closed subvariety that is isomorphic to $E^g$ or $S^gE$, respectively. When $X_{n/k}=E^g$ and $\tau =0$, the results about $B(X_{n/k},\sigma ',\mathcal {L}^{\prime }_{n/k})$ show that the morphism $\Phi _{|\mathcal {L}_{n/k}|}:E^g \to \mathbb {P}^{n-1}$ embeds $E^g$ as a projectively normal subvariety that is a scheme-theoretic intersection of quadric and cubic hypersurfaces.
@article{10_1017_fms_2020_60,
author = {Alex Chirvasitu and Ryo Kanda and S. Paul Smith},
title = {Maps from {Feigin} and {Odesskii's} elliptic algebras to twisted homogeneous coordinate rings},
journal = {Forum of Mathematics, Sigma},
publisher = {mathdoc},
volume = {9},
year = {2021},
doi = {10.1017/fms.2020.60},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2020.60/}
}
TY - JOUR AU - Alex Chirvasitu AU - Ryo Kanda AU - S. Paul Smith TI - Maps from Feigin and Odesskii's elliptic algebras to twisted homogeneous coordinate rings JO - Forum of Mathematics, Sigma PY - 2021 VL - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fms.2020.60/ DO - 10.1017/fms.2020.60 LA - en ID - 10_1017_fms_2020_60 ER -
%0 Journal Article %A Alex Chirvasitu %A Ryo Kanda %A S. Paul Smith %T Maps from Feigin and Odesskii's elliptic algebras to twisted homogeneous coordinate rings %J Forum of Mathematics, Sigma %D 2021 %V 9 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1017/fms.2020.60/ %R 10.1017/fms.2020.60 %G en %F 10_1017_fms_2020_60
Alex Chirvasitu; Ryo Kanda; S. Paul Smith. Maps from Feigin and Odesskii's elliptic algebras to twisted homogeneous coordinate rings. Forum of Mathematics, Sigma, Tome 9 (2021). doi: 10.1017/fms.2020.60
Cité par Sources :