Minimal definable graphs of definable chromatic number at least three
Forum of Mathematics, Sigma, Tome 9 (2021)

Voir la notice de l'article provenant de la source Cambridge University Press

We show that there is a Borel graph on a standard Borel space of Borel chromatic number three that admits a Borel homomorphism to every analytic graph on a standard Borel space of Borel chromatic number at least three. Moreover, we characterize the Borel graphs on standard Borel spaces of vertex-degree at most two with this property and show that the analogous result for digraphs fails.
@article{10_1017_fms_2020_58,
     author = {Rapha\"el Carroy and Benjamin D. Miller and David Schrittesser and Zolt\'an Vidny\'anszky},
     title = {Minimal definable graphs of definable chromatic number at least three},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {9},
     year = {2021},
     doi = {10.1017/fms.2020.58},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2020.58/}
}
TY  - JOUR
AU  - Raphaël Carroy
AU  - Benjamin D. Miller
AU  - David Schrittesser
AU  - Zoltán Vidnyánszky
TI  - Minimal definable graphs of definable chromatic number at least three
JO  - Forum of Mathematics, Sigma
PY  - 2021
VL  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2020.58/
DO  - 10.1017/fms.2020.58
LA  - en
ID  - 10_1017_fms_2020_58
ER  - 
%0 Journal Article
%A Raphaël Carroy
%A Benjamin D. Miller
%A David Schrittesser
%A Zoltán Vidnyánszky
%T Minimal definable graphs of definable chromatic number at least three
%J Forum of Mathematics, Sigma
%D 2021
%V 9
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2020.58/
%R 10.1017/fms.2020.58
%G en
%F 10_1017_fms_2020_58
Raphaël Carroy; Benjamin D. Miller; David Schrittesser; Zoltán Vidnyánszky. Minimal definable graphs of definable chromatic number at least three. Forum of Mathematics, Sigma, Tome 9 (2021). doi: 10.1017/fms.2020.58

Cité par Sources :