The Brouwer invariance theorems in reverse mathematics
Forum of Mathematics, Sigma, Tome 8 (2020)

Voir la notice de l'article provenant de la source Cambridge University Press

In [12], John Stillwell wrote, ‘finding the exact strength of the Brouwer invariance theorems seems to me one of the most interesting open problems in reverse mathematics.’ In this article, we solve Stillwell’s problem by showing that (some forms of) the Brouwer invariance theorems are equivalent to the weak König’s lemma over the base system ${\sf RCA}_0$. In particular, there exists an explicit algorithm which, whenever the weak König’s lemma is false, constructs a topological embedding of $\mathbb {R}^4$ into $\mathbb {R}^3$.
@article{10_1017_fms_2020_52,
     author = {Takayuki Kihara},
     title = {The {Brouwer} invariance theorems in reverse mathematics},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {8},
     year = {2020},
     doi = {10.1017/fms.2020.52},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2020.52/}
}
TY  - JOUR
AU  - Takayuki Kihara
TI  - The Brouwer invariance theorems in reverse mathematics
JO  - Forum of Mathematics, Sigma
PY  - 2020
VL  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2020.52/
DO  - 10.1017/fms.2020.52
LA  - en
ID  - 10_1017_fms_2020_52
ER  - 
%0 Journal Article
%A Takayuki Kihara
%T The Brouwer invariance theorems in reverse mathematics
%J Forum of Mathematics, Sigma
%D 2020
%V 8
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2020.52/
%R 10.1017/fms.2020.52
%G en
%F 10_1017_fms_2020_52
Takayuki Kihara. The Brouwer invariance theorems in reverse mathematics. Forum of Mathematics, Sigma, Tome 8 (2020). doi: 10.1017/fms.2020.52

Cité par Sources :