Solving the 4NLS with white noise initial data
Forum of Mathematics, Sigma, Tome 8 (2020)
Voir la notice de l'article provenant de la source Cambridge University Press
We construct global-in-time singular dynamics for the (renormalized) cubic fourth-order nonlinear Schrödinger equation on the circle, having the white noise measure as an invariant measure. For this purpose, we introduce the ‘random-resonant / nonlinear decomposition’, which allows us to single out the singular component of the solution. Unlike the classical McKean, Bourgain, Da Prato-Debussche type argument, this singular component is nonlinear, consisting of arbitrarily high powers of the random initial data. We also employ a random gauge transform, leading to random Fourier restriction norm spaces. For this problem, a contraction argument does not work, and we instead establish the convergence of smooth approximating solutions by studying the partially iterated Duhamel formulation under the random gauge transform. We reduce the crucial nonlinear estimates to boundedness properties of certain random multilinear functionals of the white noise.
@article{10_1017_fms_2020_51,
author = {Tadahiro Oh and Nikolay Tzvetkov and Yuzhao Wang},
title = {Solving the {4NLS} with white noise initial data},
journal = {Forum of Mathematics, Sigma},
publisher = {mathdoc},
volume = {8},
year = {2020},
doi = {10.1017/fms.2020.51},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2020.51/}
}
TY - JOUR AU - Tadahiro Oh AU - Nikolay Tzvetkov AU - Yuzhao Wang TI - Solving the 4NLS with white noise initial data JO - Forum of Mathematics, Sigma PY - 2020 VL - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fms.2020.51/ DO - 10.1017/fms.2020.51 LA - en ID - 10_1017_fms_2020_51 ER -
Tadahiro Oh; Nikolay Tzvetkov; Yuzhao Wang. Solving the 4NLS with white noise initial data. Forum of Mathematics, Sigma, Tome 8 (2020). doi: 10.1017/fms.2020.51
Cité par Sources :