Boolean lattices in finite alternating and symmetric groups
Forum of Mathematics, Sigma, Tome 8 (2020)
Voir la notice de l'article provenant de la source Cambridge University Press
Given a group G and a subgroup H, we let $\mathcal {O}_G(H)$ denote the lattice of subgroups of G containing H. This article provides a classification of the subgroups H of G such that $\mathcal {O}_{G}(H)$ is Boolean of rank at least $3$ when G is a finite alternating or symmetric group. Besides some sporadic examples and some twisted versions, there are two different types of such lattices. One type arises by taking stabilisers of chains of regular partitions, and the other arises by taking stabilisers of chains of regular product structures. As an application, we prove in this case a conjecture on Boolean overgroup lattices related to the dual Ore’s theorem and to a problem of Kenneth Brown.
@article{10_1017_fms_2020_49,
author = {Andrea Lucchini and Mariapia Moscatiello and Sebastien Palcoux and Pablo Spiga},
title = {Boolean lattices in finite alternating and symmetric groups},
journal = {Forum of Mathematics, Sigma},
publisher = {mathdoc},
volume = {8},
year = {2020},
doi = {10.1017/fms.2020.49},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2020.49/}
}
TY - JOUR AU - Andrea Lucchini AU - Mariapia Moscatiello AU - Sebastien Palcoux AU - Pablo Spiga TI - Boolean lattices in finite alternating and symmetric groups JO - Forum of Mathematics, Sigma PY - 2020 VL - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fms.2020.49/ DO - 10.1017/fms.2020.49 LA - en ID - 10_1017_fms_2020_49 ER -
%0 Journal Article %A Andrea Lucchini %A Mariapia Moscatiello %A Sebastien Palcoux %A Pablo Spiga %T Boolean lattices in finite alternating and symmetric groups %J Forum of Mathematics, Sigma %D 2020 %V 8 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1017/fms.2020.49/ %R 10.1017/fms.2020.49 %G en %F 10_1017_fms_2020_49
Andrea Lucchini; Mariapia Moscatiello; Sebastien Palcoux; Pablo Spiga. Boolean lattices in finite alternating and symmetric groups. Forum of Mathematics, Sigma, Tome 8 (2020). doi: 10.1017/fms.2020.49
Cité par Sources :