Boolean lattices in finite alternating and symmetric groups
Forum of Mathematics, Sigma, Tome 8 (2020)

Voir la notice de l'article provenant de la source Cambridge University Press

Given a group G and a subgroup H, we let $\mathcal {O}_G(H)$ denote the lattice of subgroups of G containing H. This article provides a classification of the subgroups H of G such that $\mathcal {O}_{G}(H)$ is Boolean of rank at least $3$ when G is a finite alternating or symmetric group. Besides some sporadic examples and some twisted versions, there are two different types of such lattices. One type arises by taking stabilisers of chains of regular partitions, and the other arises by taking stabilisers of chains of regular product structures. As an application, we prove in this case a conjecture on Boolean overgroup lattices related to the dual Ore’s theorem and to a problem of Kenneth Brown.
@article{10_1017_fms_2020_49,
     author = {Andrea Lucchini and Mariapia Moscatiello and Sebastien Palcoux and Pablo Spiga},
     title = {Boolean lattices in finite alternating and symmetric groups},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {8},
     year = {2020},
     doi = {10.1017/fms.2020.49},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2020.49/}
}
TY  - JOUR
AU  - Andrea Lucchini
AU  - Mariapia Moscatiello
AU  - Sebastien Palcoux
AU  - Pablo Spiga
TI  - Boolean lattices in finite alternating and symmetric groups
JO  - Forum of Mathematics, Sigma
PY  - 2020
VL  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2020.49/
DO  - 10.1017/fms.2020.49
LA  - en
ID  - 10_1017_fms_2020_49
ER  - 
%0 Journal Article
%A Andrea Lucchini
%A Mariapia Moscatiello
%A Sebastien Palcoux
%A Pablo Spiga
%T Boolean lattices in finite alternating and symmetric groups
%J Forum of Mathematics, Sigma
%D 2020
%V 8
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2020.49/
%R 10.1017/fms.2020.49
%G en
%F 10_1017_fms_2020_49
Andrea Lucchini; Mariapia Moscatiello; Sebastien Palcoux; Pablo Spiga. Boolean lattices in finite alternating and symmetric groups. Forum of Mathematics, Sigma, Tome 8 (2020). doi: 10.1017/fms.2020.49

Cité par Sources :