The construction problem for Hodge numbers modulo an integer in positive characteristic
Forum of Mathematics, Sigma, Tome 8 (2020)
Voir la notice de l'article provenant de la source Cambridge University Press
Let k be an algebraically closed field of positive characteristic. For any integer $m\ge 2$, we show that the Hodge numbers of a smooth projective k-variety can take on any combination of values modulo m, subject only to Serre duality. In particular, there are no non-trivial polynomial relations between the Hodge numbers.
@article{10_1017_fms_2020_48,
author = {Remy van Dobben de Bruyn and Matthias Paulsen},
title = {The construction problem for {Hodge} numbers modulo an integer in positive characteristic},
journal = {Forum of Mathematics, Sigma},
publisher = {mathdoc},
volume = {8},
year = {2020},
doi = {10.1017/fms.2020.48},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2020.48/}
}
TY - JOUR AU - Remy van Dobben de Bruyn AU - Matthias Paulsen TI - The construction problem for Hodge numbers modulo an integer in positive characteristic JO - Forum of Mathematics, Sigma PY - 2020 VL - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fms.2020.48/ DO - 10.1017/fms.2020.48 LA - en ID - 10_1017_fms_2020_48 ER -
%0 Journal Article %A Remy van Dobben de Bruyn %A Matthias Paulsen %T The construction problem for Hodge numbers modulo an integer in positive characteristic %J Forum of Mathematics, Sigma %D 2020 %V 8 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1017/fms.2020.48/ %R 10.1017/fms.2020.48 %G en %F 10_1017_fms_2020_48
Remy van Dobben de Bruyn; Matthias Paulsen. The construction problem for Hodge numbers modulo an integer in positive characteristic. Forum of Mathematics, Sigma, Tome 8 (2020). doi: 10.1017/fms.2020.48
Cité par Sources :