The construction problem for Hodge numbers modulo an integer in positive characteristic
Forum of Mathematics, Sigma, Tome 8 (2020)

Voir la notice de l'article provenant de la source Cambridge University Press

Let k be an algebraically closed field of positive characteristic. For any integer $m\ge 2$, we show that the Hodge numbers of a smooth projective k-variety can take on any combination of values modulo m, subject only to Serre duality. In particular, there are no non-trivial polynomial relations between the Hodge numbers.
@article{10_1017_fms_2020_48,
     author = {Remy van Dobben de Bruyn and Matthias Paulsen},
     title = {The construction problem for {Hodge} numbers modulo an integer in positive characteristic},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {8},
     year = {2020},
     doi = {10.1017/fms.2020.48},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2020.48/}
}
TY  - JOUR
AU  - Remy van Dobben de Bruyn
AU  - Matthias Paulsen
TI  - The construction problem for Hodge numbers modulo an integer in positive characteristic
JO  - Forum of Mathematics, Sigma
PY  - 2020
VL  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2020.48/
DO  - 10.1017/fms.2020.48
LA  - en
ID  - 10_1017_fms_2020_48
ER  - 
%0 Journal Article
%A Remy van Dobben de Bruyn
%A Matthias Paulsen
%T The construction problem for Hodge numbers modulo an integer in positive characteristic
%J Forum of Mathematics, Sigma
%D 2020
%V 8
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2020.48/
%R 10.1017/fms.2020.48
%G en
%F 10_1017_fms_2020_48
Remy van Dobben de Bruyn; Matthias Paulsen. The construction problem for Hodge numbers modulo an integer in positive characteristic. Forum of Mathematics, Sigma, Tome 8 (2020). doi: 10.1017/fms.2020.48

Cité par Sources :