A dichotomy of sets via typical differentiability
Forum of Mathematics, Sigma, Tome 8 (2020)

Voir la notice de l'article provenant de la source Cambridge University Press

We obtain a criterion for an analytic subset of a Euclidean space to contain points of differentiability of a typical Lipschitz function: namely, that it cannot be covered by countably many sets, each of which is closed and purely unrectifiable (has a zero-length intersection with every $C^1$ curve). Surprisingly, we establish that any set failing this criterion witnesses the opposite extreme of typical behaviour: in any such coverable set, a typical Lipschitz function is everywhere severely non-differentiable.
@article{10_1017_fms_2020_45,
     author = {Michael Dymond and Olga Maleva},
     title = {A dichotomy of sets via typical differentiability},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {8},
     year = {2020},
     doi = {10.1017/fms.2020.45},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2020.45/}
}
TY  - JOUR
AU  - Michael Dymond
AU  - Olga Maleva
TI  - A dichotomy of sets via typical differentiability
JO  - Forum of Mathematics, Sigma
PY  - 2020
VL  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2020.45/
DO  - 10.1017/fms.2020.45
LA  - en
ID  - 10_1017_fms_2020_45
ER  - 
%0 Journal Article
%A Michael Dymond
%A Olga Maleva
%T A dichotomy of sets via typical differentiability
%J Forum of Mathematics, Sigma
%D 2020
%V 8
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2020.45/
%R 10.1017/fms.2020.45
%G en
%F 10_1017_fms_2020_45
Michael Dymond; Olga Maleva. A dichotomy of sets via typical differentiability. Forum of Mathematics, Sigma, Tome 8 (2020). doi: 10.1017/fms.2020.45

Cité par Sources :