A maximally-graded invertible cubic threefold that does not admit a full exceptional collection of line bundles
Forum of Mathematics, Sigma, Tome 8 (2020)
Voir la notice de l'article provenant de la source Cambridge University Press
We show that there exists a cubic threefold defined by an invertible polynomial that, when quotiented by the maximal diagonal symmetry group, has a derived category that does not have a full exceptional collection consisting of line bundles. This provides a counterexample to a conjecture of Lekili and Ueda.
@article{10_1017_fms_2020_44,
author = {David Favero and Daniel Kaplan and Tyler L. Kelly},
title = {A maximally-graded invertible cubic threefold that does not admit a full exceptional collection of line bundles},
journal = {Forum of Mathematics, Sigma},
publisher = {mathdoc},
volume = {8},
year = {2020},
doi = {10.1017/fms.2020.44},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2020.44/}
}
TY - JOUR AU - David Favero AU - Daniel Kaplan AU - Tyler L. Kelly TI - A maximally-graded invertible cubic threefold that does not admit a full exceptional collection of line bundles JO - Forum of Mathematics, Sigma PY - 2020 VL - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fms.2020.44/ DO - 10.1017/fms.2020.44 LA - en ID - 10_1017_fms_2020_44 ER -
%0 Journal Article %A David Favero %A Daniel Kaplan %A Tyler L. Kelly %T A maximally-graded invertible cubic threefold that does not admit a full exceptional collection of line bundles %J Forum of Mathematics, Sigma %D 2020 %V 8 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1017/fms.2020.44/ %R 10.1017/fms.2020.44 %G en %F 10_1017_fms_2020_44
David Favero; Daniel Kaplan; Tyler L. Kelly. A maximally-graded invertible cubic threefold that does not admit a full exceptional collection of line bundles. Forum of Mathematics, Sigma, Tome 8 (2020). doi: 10.1017/fms.2020.44
Cité par Sources :