A maximally-graded invertible cubic threefold that does not admit a full exceptional collection of line bundles
Forum of Mathematics, Sigma, Tome 8 (2020)

Voir la notice de l'article provenant de la source Cambridge University Press

We show that there exists a cubic threefold defined by an invertible polynomial that, when quotiented by the maximal diagonal symmetry group, has a derived category that does not have a full exceptional collection consisting of line bundles. This provides a counterexample to a conjecture of Lekili and Ueda.
@article{10_1017_fms_2020_44,
     author = {David Favero and Daniel Kaplan and Tyler L. Kelly},
     title = {A maximally-graded invertible cubic threefold that does not admit a full exceptional collection of line bundles},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {8},
     year = {2020},
     doi = {10.1017/fms.2020.44},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2020.44/}
}
TY  - JOUR
AU  - David Favero
AU  - Daniel Kaplan
AU  - Tyler L. Kelly
TI  - A maximally-graded invertible cubic threefold that does not admit a full exceptional collection of line bundles
JO  - Forum of Mathematics, Sigma
PY  - 2020
VL  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2020.44/
DO  - 10.1017/fms.2020.44
LA  - en
ID  - 10_1017_fms_2020_44
ER  - 
%0 Journal Article
%A David Favero
%A Daniel Kaplan
%A Tyler L. Kelly
%T A maximally-graded invertible cubic threefold that does not admit a full exceptional collection of line bundles
%J Forum of Mathematics, Sigma
%D 2020
%V 8
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2020.44/
%R 10.1017/fms.2020.44
%G en
%F 10_1017_fms_2020_44
David Favero; Daniel Kaplan; Tyler L. Kelly. A maximally-graded invertible cubic threefold that does not admit a full exceptional collection of line bundles. Forum of Mathematics, Sigma, Tome 8 (2020). doi: 10.1017/fms.2020.44

Cité par Sources :