Profinite invariants of arithmetic groups
Forum of Mathematics, Sigma, Tome 8 (2020)
Voir la notice de l'article provenant de la source Cambridge University Press
We prove that the sign of the Euler characteristic of arithmetic groups with the congruence subgroup property is determined by the profinite completion. In contrast, we construct examples showing that this is not true for the Euler characteristic itself and that the sign of the Euler characteristic is not profinite among general residually finite groups of type F. Our methods imply similar results for $\ell^2$-torsion as well as a strong profiniteness statement for Novikov–Shubin invariants.
@article{10_1017_fms_2020_43,
author = {Holger Kammeyer and Steffen Kionke and Jean Raimbault and Roman Sauer},
title = {Profinite invariants of arithmetic groups},
journal = {Forum of Mathematics, Sigma},
publisher = {mathdoc},
volume = {8},
year = {2020},
doi = {10.1017/fms.2020.43},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2020.43/}
}
TY - JOUR AU - Holger Kammeyer AU - Steffen Kionke AU - Jean Raimbault AU - Roman Sauer TI - Profinite invariants of arithmetic groups JO - Forum of Mathematics, Sigma PY - 2020 VL - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fms.2020.43/ DO - 10.1017/fms.2020.43 LA - en ID - 10_1017_fms_2020_43 ER -
%0 Journal Article %A Holger Kammeyer %A Steffen Kionke %A Jean Raimbault %A Roman Sauer %T Profinite invariants of arithmetic groups %J Forum of Mathematics, Sigma %D 2020 %V 8 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1017/fms.2020.43/ %R 10.1017/fms.2020.43 %G en %F 10_1017_fms_2020_43
Holger Kammeyer; Steffen Kionke; Jean Raimbault; Roman Sauer. Profinite invariants of arithmetic groups. Forum of Mathematics, Sigma, Tome 8 (2020). doi: 10.1017/fms.2020.43
Cité par Sources :