The cohomology of Torelli groups is algebraic
Forum of Mathematics, Sigma, Tome 8 (2020)

Voir la notice de l'article provenant de la source Cambridge University Press

The Torelli group of $W_g = \#^g S^n \times S^n$ is the group of diffeomorphisms of $W_g$ fixing a disc that act trivially on $H_n(W_g;\mathbb{Z} )$. The rational cohomology groups of the Torelli group are representations of an arithmetic subgroup of $\text{Sp}_{2g}(\mathbb{Z} )$ or $\text{O}_{g,g}(\mathbb{Z} )$. In this article we prove that for $2n \geq 6$ and $g \geq 2$, they are in fact algebraic representations. Combined with previous work, this determines the rational cohomology of the Torelli group in a stable range. We further prove that the classifying space of the Torelli group is nilpotent.
@article{10_1017_fms_2020_41,
     author = {Alexander Kupers and Oscar Randal-Williams},
     title = {The cohomology of {Torelli} groups is algebraic},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {8},
     year = {2020},
     doi = {10.1017/fms.2020.41},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2020.41/}
}
TY  - JOUR
AU  - Alexander Kupers
AU  - Oscar Randal-Williams
TI  - The cohomology of Torelli groups is algebraic
JO  - Forum of Mathematics, Sigma
PY  - 2020
VL  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2020.41/
DO  - 10.1017/fms.2020.41
LA  - en
ID  - 10_1017_fms_2020_41
ER  - 
%0 Journal Article
%A Alexander Kupers
%A Oscar Randal-Williams
%T The cohomology of Torelli groups is algebraic
%J Forum of Mathematics, Sigma
%D 2020
%V 8
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2020.41/
%R 10.1017/fms.2020.41
%G en
%F 10_1017_fms_2020_41
Alexander Kupers; Oscar Randal-Williams. The cohomology of Torelli groups is algebraic. Forum of Mathematics, Sigma, Tome 8 (2020). doi: 10.1017/fms.2020.41

Cité par Sources :