A rainbow blow-up lemma for almost optimally bounded edge-colourings
Forum of Mathematics, Sigma, Tome 8 (2020)

Voir la notice de l'article provenant de la source Cambridge University Press

A subgraph of an edge-coloured graph is called rainbow if all its edges have different colours. We prove a rainbow version of the blow-up lemma of Komlós, Sárközy, and Szemerédi that applies to almost optimally bounded colourings. A corollary of this is that there exists a rainbow copy of any bounded-degree spanning subgraph H in a quasirandom host graph G, assuming that the edge-colouring of G fulfills a boundedness condition that is asymptotically best possible.This has many applications beyond rainbow colourings: for example, to graph decompositions, orthogonal double covers, and graph labellings.
@article{10_1017_fms_2020_38,
     author = {Stefan Ehard and Stefan Glock and Felix Joos},
     title = {A rainbow blow-up lemma for almost optimally bounded edge-colourings},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {8},
     year = {2020},
     doi = {10.1017/fms.2020.38},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2020.38/}
}
TY  - JOUR
AU  - Stefan Ehard
AU  - Stefan Glock
AU  - Felix Joos
TI  - A rainbow blow-up lemma for almost optimally bounded edge-colourings
JO  - Forum of Mathematics, Sigma
PY  - 2020
VL  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2020.38/
DO  - 10.1017/fms.2020.38
LA  - en
ID  - 10_1017_fms_2020_38
ER  - 
%0 Journal Article
%A Stefan Ehard
%A Stefan Glock
%A Felix Joos
%T A rainbow blow-up lemma for almost optimally bounded edge-colourings
%J Forum of Mathematics, Sigma
%D 2020
%V 8
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2020.38/
%R 10.1017/fms.2020.38
%G en
%F 10_1017_fms_2020_38
Stefan Ehard; Stefan Glock; Felix Joos. A rainbow blow-up lemma for almost optimally bounded edge-colourings. Forum of Mathematics, Sigma, Tome 8 (2020). doi: 10.1017/fms.2020.38

Cité par Sources :