A rainbow blow-up lemma for almost optimally bounded edge-colourings
Forum of Mathematics, Sigma, Tome 8 (2020)
Voir la notice de l'article provenant de la source Cambridge University Press
A subgraph of an edge-coloured graph is called rainbow if all its edges have different colours. We prove a rainbow version of the blow-up lemma of Komlós, Sárközy, and Szemerédi that applies to almost optimally bounded colourings. A corollary of this is that there exists a rainbow copy of any bounded-degree spanning subgraph H in a quasirandom host graph G, assuming that the edge-colouring of G fulfills a boundedness condition that is asymptotically best possible.This has many applications beyond rainbow colourings: for example, to graph decompositions, orthogonal double covers, and graph labellings.
@article{10_1017_fms_2020_38,
author = {Stefan Ehard and Stefan Glock and Felix Joos},
title = {A rainbow blow-up lemma for almost optimally bounded edge-colourings},
journal = {Forum of Mathematics, Sigma},
publisher = {mathdoc},
volume = {8},
year = {2020},
doi = {10.1017/fms.2020.38},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2020.38/}
}
TY - JOUR AU - Stefan Ehard AU - Stefan Glock AU - Felix Joos TI - A rainbow blow-up lemma for almost optimally bounded edge-colourings JO - Forum of Mathematics, Sigma PY - 2020 VL - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fms.2020.38/ DO - 10.1017/fms.2020.38 LA - en ID - 10_1017_fms_2020_38 ER -
%0 Journal Article %A Stefan Ehard %A Stefan Glock %A Felix Joos %T A rainbow blow-up lemma for almost optimally bounded edge-colourings %J Forum of Mathematics, Sigma %D 2020 %V 8 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1017/fms.2020.38/ %R 10.1017/fms.2020.38 %G en %F 10_1017_fms_2020_38
Stefan Ehard; Stefan Glock; Felix Joos. A rainbow blow-up lemma for almost optimally bounded edge-colourings. Forum of Mathematics, Sigma, Tome 8 (2020). doi: 10.1017/fms.2020.38
Cité par Sources :