The integral cohomology of the Hilbert scheme of points on a surface
Forum of Mathematics, Sigma, Tome 8 (2020)

Voir la notice de l'article provenant de la source Cambridge University Press

We show that if X is a smooth complex projective surface with torsion-free cohomology, then the Hilbert scheme $X^{[n]}$ has torsion-free cohomology for every natural number n. This extends earlier work by Markman on the case of Poisson surfaces. The proof uses Gholampour-Thomas’s reduced obstruction theory for nested Hilbert schemes of surfaces.
@article{10_1017_fms_2020_35,
     author = {Burt Totaro},
     title = {The integral cohomology of the {Hilbert} scheme of points on a surface},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {8},
     year = {2020},
     doi = {10.1017/fms.2020.35},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2020.35/}
}
TY  - JOUR
AU  - Burt Totaro
TI  - The integral cohomology of the Hilbert scheme of points on a surface
JO  - Forum of Mathematics, Sigma
PY  - 2020
VL  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2020.35/
DO  - 10.1017/fms.2020.35
LA  - en
ID  - 10_1017_fms_2020_35
ER  - 
%0 Journal Article
%A Burt Totaro
%T The integral cohomology of the Hilbert scheme of points on a surface
%J Forum of Mathematics, Sigma
%D 2020
%V 8
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2020.35/
%R 10.1017/fms.2020.35
%G en
%F 10_1017_fms_2020_35
Burt Totaro. The integral cohomology of the Hilbert scheme of points on a surface. Forum of Mathematics, Sigma, Tome 8 (2020). doi: 10.1017/fms.2020.35

Cité par Sources :