Motivic Steenrod operations in characteristic p
Forum of Mathematics, Sigma, Tome 8 (2020)

Voir la notice de l'article provenant de la source Cambridge University Press

For a prime p and a field k of characteristic $p,$ we define Steenrod operations $P^{n}_{k}$ on motivic cohomology with $\mathbb {F}_{p}$-coefficients of smooth varieties defined over the base field $k.$ We show that $P^{n}_{k}$ is the pth power on $H^{2n,n}(-,\mathbb {F}_{p}) \cong CH^{n}(-)/p$ and prove an instability result for the operations. Restricted to mod p Chow groups, we show that the operations satisfy the expected Adem relations and Cartan formula. Using these new operations, we remove previous restrictions on the characteristic of the base field for Rost’s degree formula. Over a base field of characteristic $2,$ we obtain new results on quadratic forms.
@article{10_1017_fms_2020_34,
     author = {Eric Primozic},
     title = {Motivic {Steenrod} operations in characteristic p},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {8},
     year = {2020},
     doi = {10.1017/fms.2020.34},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2020.34/}
}
TY  - JOUR
AU  - Eric Primozic
TI  - Motivic Steenrod operations in characteristic p
JO  - Forum of Mathematics, Sigma
PY  - 2020
VL  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2020.34/
DO  - 10.1017/fms.2020.34
LA  - en
ID  - 10_1017_fms_2020_34
ER  - 
%0 Journal Article
%A Eric Primozic
%T Motivic Steenrod operations in characteristic p
%J Forum of Mathematics, Sigma
%D 2020
%V 8
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2020.34/
%R 10.1017/fms.2020.34
%G en
%F 10_1017_fms_2020_34
Eric Primozic. Motivic Steenrod operations in characteristic p. Forum of Mathematics, Sigma, Tome 8 (2020). doi: 10.1017/fms.2020.34

Cité par Sources :