Bounds for twisted symmetric square L-functions via half-integral weight periods
Forum of Mathematics, Sigma, Tome 8 (2020)

Voir la notice de l'article provenant de la source Cambridge University Press

We establish the first moment bound

$\begin{align*}\sum_{\varphi} L(\varphi \otimes \varphi \otimes \Psi, \tfrac{1}{2}) \ll_\varepsilon p^{5/4+\varepsilon} \end{align*}$

for triple product L-functions, where $\Psi $ is a fixed Hecke–Maass form on $\operatorname {\mathrm {SL}}_2(\mathbb {Z})$ and $\varphi $ runs over the Hecke–Maass newforms on $\Gamma _0(p)$ of bounded eigenvalue. The proof is via the theta correspondence and analysis of periods of half-integral weight modular forms. This estimate is not expected to be optimal, but the exponent $5/4$ is the strongest obtained to date for a moment problem of this shape. We show that the expected upper bound follows if one assumes the Ramanujan conjecture in both the integral and half-integral weight cases.Under the triple product formula, our result may be understood as a strong level aspect form of quantum ergodicity: for a large prime p, all but very few Hecke–Maass newforms on $\Gamma _0(p) \backslash \mathbb {H}$ of bounded eigenvalue have very uniformly distributed mass after pushforward to $\operatorname {\mathrm {SL}}_2(\mathbb {Z}) \backslash \mathbb {H}$.Our main result turns out to be closely related to estimates such as

$\begin{align*}\sum_{|n| p} L(\Psi \otimes \chi_{n p},\tfrac{1}{2}) \ll p, \end{align*}$

where the sum is over those n for which $n p$ is a fundamental discriminant and $\chi _{n p}$ denotes the corresponding quadratic character. Such estimates improve upon bounds of Duke–Iwaniec.
@article{10_1017_fms_2020_33,
     author = {Paul D. Nelson},
     title = {Bounds for twisted symmetric square {L-functions} via half-integral weight periods},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {8},
     year = {2020},
     doi = {10.1017/fms.2020.33},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2020.33/}
}
TY  - JOUR
AU  - Paul D. Nelson
TI  - Bounds for twisted symmetric square L-functions via half-integral weight periods
JO  - Forum of Mathematics, Sigma
PY  - 2020
VL  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2020.33/
DO  - 10.1017/fms.2020.33
LA  - en
ID  - 10_1017_fms_2020_33
ER  - 
%0 Journal Article
%A Paul D. Nelson
%T Bounds for twisted symmetric square L-functions via half-integral weight periods
%J Forum of Mathematics, Sigma
%D 2020
%V 8
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2020.33/
%R 10.1017/fms.2020.33
%G en
%F 10_1017_fms_2020_33
Paul D. Nelson. Bounds for twisted symmetric square L-functions via half-integral weight periods. Forum of Mathematics, Sigma, Tome 8 (2020). doi: 10.1017/fms.2020.33

Cité par Sources :