RC-positive metrics on rationally connected manifolds
Forum of Mathematics, Sigma, Tome 8 (2020)

Voir la notice de l'article provenant de la source Cambridge University Press

In this paper, we prove that if a compact Kähler manifold X has a smooth Hermitian metric $\omega $ such that $(T_X,\omega )$ is uniformly RC-positive, then X is projective and rationally connected. Conversely, we show that, if a projective manifold X is rationally connected, then there exists a uniformly RC-positive complex Finsler metric on $T_X$.
@article{10_1017_fms_2020_32,
     author = {Xiaokui Yang},
     title = {RC-positive metrics on rationally connected manifolds},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {8},
     year = {2020},
     doi = {10.1017/fms.2020.32},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2020.32/}
}
TY  - JOUR
AU  - Xiaokui Yang
TI  - RC-positive metrics on rationally connected manifolds
JO  - Forum of Mathematics, Sigma
PY  - 2020
VL  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2020.32/
DO  - 10.1017/fms.2020.32
LA  - en
ID  - 10_1017_fms_2020_32
ER  - 
%0 Journal Article
%A Xiaokui Yang
%T RC-positive metrics on rationally connected manifolds
%J Forum of Mathematics, Sigma
%D 2020
%V 8
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2020.32/
%R 10.1017/fms.2020.32
%G en
%F 10_1017_fms_2020_32
Xiaokui Yang. RC-positive metrics on rationally connected manifolds. Forum of Mathematics, Sigma, Tome 8 (2020). doi: 10.1017/fms.2020.32

Cité par Sources :