Non-existence of bi-infinite geodesics in the exponential corner growth model
Forum of Mathematics, Sigma, Tome 8 (2020)

Voir la notice de l'article provenant de la source Cambridge University Press

This paper gives a self-contained proof of the non-existence of nontrivial bi-infinite geodesics in directed planar last-passage percolation with exponential weights. The techniques used are couplings, coarse graining, and control of geodesics through planarity and estimates derived from increment-stationary versions of the last-passage percolation process.
@article{10_1017_fms_2020_31,
     author = {M\'arton Bal\'azs and Ofer Busani and Timo Sepp\"al\"ainen},
     title = {Non-existence of bi-infinite geodesics in the exponential corner growth model},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {8},
     year = {2020},
     doi = {10.1017/fms.2020.31},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2020.31/}
}
TY  - JOUR
AU  - Márton Balázs
AU  - Ofer Busani
AU  - Timo Seppäläinen
TI  - Non-existence of bi-infinite geodesics in the exponential corner growth model
JO  - Forum of Mathematics, Sigma
PY  - 2020
VL  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2020.31/
DO  - 10.1017/fms.2020.31
LA  - en
ID  - 10_1017_fms_2020_31
ER  - 
%0 Journal Article
%A Márton Balázs
%A Ofer Busani
%A Timo Seppäläinen
%T Non-existence of bi-infinite geodesics in the exponential corner growth model
%J Forum of Mathematics, Sigma
%D 2020
%V 8
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2020.31/
%R 10.1017/fms.2020.31
%G en
%F 10_1017_fms_2020_31
Márton Balázs; Ofer Busani; Timo Seppäläinen. Non-existence of bi-infinite geodesics in the exponential corner growth model. Forum of Mathematics, Sigma, Tome 8 (2020). doi: 10.1017/fms.2020.31

Cité par Sources :