Non-existence of bi-infinite geodesics in the exponential corner growth model
Forum of Mathematics, Sigma, Tome 8 (2020)
Voir la notice de l'article provenant de la source Cambridge University Press
This paper gives a self-contained proof of the non-existence of nontrivial bi-infinite geodesics in directed planar last-passage percolation with exponential weights. The techniques used are couplings, coarse graining, and control of geodesics through planarity and estimates derived from increment-stationary versions of the last-passage percolation process.
@article{10_1017_fms_2020_31,
author = {M\'arton Bal\'azs and Ofer Busani and Timo Sepp\"al\"ainen},
title = {Non-existence of bi-infinite geodesics in the exponential corner growth model},
journal = {Forum of Mathematics, Sigma},
publisher = {mathdoc},
volume = {8},
year = {2020},
doi = {10.1017/fms.2020.31},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2020.31/}
}
TY - JOUR AU - Márton Balázs AU - Ofer Busani AU - Timo Seppäläinen TI - Non-existence of bi-infinite geodesics in the exponential corner growth model JO - Forum of Mathematics, Sigma PY - 2020 VL - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fms.2020.31/ DO - 10.1017/fms.2020.31 LA - en ID - 10_1017_fms_2020_31 ER -
%0 Journal Article %A Márton Balázs %A Ofer Busani %A Timo Seppäläinen %T Non-existence of bi-infinite geodesics in the exponential corner growth model %J Forum of Mathematics, Sigma %D 2020 %V 8 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1017/fms.2020.31/ %R 10.1017/fms.2020.31 %G en %F 10_1017_fms_2020_31
Márton Balázs; Ofer Busani; Timo Seppäläinen. Non-existence of bi-infinite geodesics in the exponential corner growth model. Forum of Mathematics, Sigma, Tome 8 (2020). doi: 10.1017/fms.2020.31
Cité par Sources :