Semisimplification for subgroups of reductive algebraic groups
Forum of Mathematics, Sigma, Tome 8 (2020)

Voir la notice de l'article provenant de la source Cambridge University Press

Let G be a reductive algebraic group—possibly non-connected—over a field k, and let H be a subgroup of G. If $G= {GL }_n$, then there is a degeneration process for obtaining from H a completely reducible subgroup $H'$ of G; one takes a limit of H along a cocharacter of G in an appropriate sense. We generalise this idea to arbitrary reductive G using the notion of G-complete reducibility and results from geometric invariant theory over non-algebraically closed fields due to the authors and Herpel. Our construction produces a G-completely reducible subgroup $H'$ of G, unique up to $G(k)$-conjugacy, which we call a k-semisimplification of H. This gives a single unifying construction that extends various special cases in the literature (in particular, it agrees with the usual notion for $G= GL _n$ and with Serre’s ‘G-analogue’ of semisimplification for subgroups of $G(k)$ from [19]). We also show that under some extra hypotheses, one can pick $H'$ in a more canonical way using the Tits Centre Conjecture for spherical buildings and/or the theory of optimal destabilising cocharacters introduced by Hesselink, Kempf, and Rousseau.
@article{10_1017_fms_2020_30,
     author = {Michael Bate and Benjamin Martin and Gerhard R\"ohrle},
     title = {Semisimplification for subgroups of reductive algebraic groups},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {8},
     year = {2020},
     doi = {10.1017/fms.2020.30},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2020.30/}
}
TY  - JOUR
AU  - Michael Bate
AU  - Benjamin Martin
AU  - Gerhard Röhrle
TI  - Semisimplification for subgroups of reductive algebraic groups
JO  - Forum of Mathematics, Sigma
PY  - 2020
VL  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2020.30/
DO  - 10.1017/fms.2020.30
LA  - en
ID  - 10_1017_fms_2020_30
ER  - 
%0 Journal Article
%A Michael Bate
%A Benjamin Martin
%A Gerhard Röhrle
%T Semisimplification for subgroups of reductive algebraic groups
%J Forum of Mathematics, Sigma
%D 2020
%V 8
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2020.30/
%R 10.1017/fms.2020.30
%G en
%F 10_1017_fms_2020_30
Michael Bate; Benjamin Martin; Gerhard Röhrle. Semisimplification for subgroups of reductive algebraic groups. Forum of Mathematics, Sigma, Tome 8 (2020). doi: 10.1017/fms.2020.30

Cité par Sources :