Semisimplification for subgroups of reductive algebraic groups
    
    
  
  
  
      
      
      
        
Forum of Mathematics, Sigma, Tome 8 (2020)
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Cambridge University Press
            
              Let G be a reductive algebraic group—possibly non-connected—over a field k, and let H be a subgroup of G. If $G= {GL }_n$, then there is a degeneration process for obtaining from H a completely reducible subgroup $H'$ of G; one takes a limit of H along a cocharacter of G in an appropriate sense. We generalise this idea to arbitrary reductive G using the notion of G-complete reducibility and results from geometric invariant theory over non-algebraically closed fields due to the authors and Herpel. Our construction produces a G-completely reducible subgroup $H'$ of G, unique up to $G(k)$-conjugacy, which we call a k-semisimplification of H. This gives a single unifying construction that extends various special cases in the literature (in particular, it agrees with the usual notion for $G= GL _n$ and with Serre’s ‘G-analogue’ of semisimplification for subgroups of $G(k)$ from [19]). We also show that under some extra hypotheses, one can pick $H'$ in a more canonical way using the Tits Centre Conjecture for spherical buildings and/or the theory of optimal destabilising cocharacters introduced by Hesselink, Kempf, and Rousseau.
            
            
            
          
        
      @article{10_1017_fms_2020_30,
     author = {Michael Bate and Benjamin Martin and Gerhard R\"ohrle},
     title = {Semisimplification for subgroups of reductive algebraic groups},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {8},
     year = {2020},
     doi = {10.1017/fms.2020.30},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2020.30/}
}
                      
                      
                    TY - JOUR AU - Michael Bate AU - Benjamin Martin AU - Gerhard Röhrle TI - Semisimplification for subgroups of reductive algebraic groups JO - Forum of Mathematics, Sigma PY - 2020 VL - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fms.2020.30/ DO - 10.1017/fms.2020.30 LA - en ID - 10_1017_fms_2020_30 ER -
%0 Journal Article %A Michael Bate %A Benjamin Martin %A Gerhard Röhrle %T Semisimplification for subgroups of reductive algebraic groups %J Forum of Mathematics, Sigma %D 2020 %V 8 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1017/fms.2020.30/ %R 10.1017/fms.2020.30 %G en %F 10_1017_fms_2020_30
Michael Bate; Benjamin Martin; Gerhard Röhrle. Semisimplification for subgroups of reductive algebraic groups. Forum of Mathematics, Sigma, Tome 8 (2020). doi: 10.1017/fms.2020.30
Cité par Sources :