COARSE AND FINE GEOMETRY OF THE THURSTON METRIC
Forum of Mathematics, Sigma, Tome 8 (2020)

Voir la notice de l'article provenant de la source Cambridge University Press

We study the geometry of the Thurston metric on the Teichmüller space of hyperbolic structures on a surface $S$. Some of our results on the coarse geometry of this metric apply to arbitrary surfaces $S$ of finite type; however, we focus particular attention on the case where the surface is a once-punctured torus. In that case, our results provide a detailed picture of the infinitesimal, local, and global behavior of the geodesics of the Thurston metric, as well as an analogue of Royden’s theorem.
@article{10_1017_fms_2020_3,
     author = {DAVID DUMAS and ANNA LENZHEN and KASRA RAFI and JING TAO},
     title = {COARSE {AND} {FINE} {GEOMETRY} {OF} {THE} {THURSTON} {METRIC}},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {8},
     year = {2020},
     doi = {10.1017/fms.2020.3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2020.3/}
}
TY  - JOUR
AU  - DAVID DUMAS
AU  - ANNA LENZHEN
AU  - KASRA RAFI
AU  - JING TAO
TI  - COARSE AND FINE GEOMETRY OF THE THURSTON METRIC
JO  - Forum of Mathematics, Sigma
PY  - 2020
VL  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2020.3/
DO  - 10.1017/fms.2020.3
LA  - en
ID  - 10_1017_fms_2020_3
ER  - 
%0 Journal Article
%A DAVID DUMAS
%A ANNA LENZHEN
%A KASRA RAFI
%A JING TAO
%T COARSE AND FINE GEOMETRY OF THE THURSTON METRIC
%J Forum of Mathematics, Sigma
%D 2020
%V 8
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2020.3/
%R 10.1017/fms.2020.3
%G en
%F 10_1017_fms_2020_3
DAVID DUMAS; ANNA LENZHEN; KASRA RAFI; JING TAO. COARSE AND FINE GEOMETRY OF THE THURSTON METRIC. Forum of Mathematics, Sigma, Tome 8 (2020). doi: 10.1017/fms.2020.3

Cité par Sources :