COARSE AND FINE GEOMETRY OF THE THURSTON METRIC
Forum of Mathematics, Sigma, Tome 8 (2020)
Voir la notice de l'article provenant de la source Cambridge University Press
We study the geometry of the Thurston metric on the Teichmüller space of hyperbolic structures on a surface $S$. Some of our results on the coarse geometry of this metric apply to arbitrary surfaces $S$ of finite type; however, we focus particular attention on the case where the surface is a once-punctured torus. In that case, our results provide a detailed picture of the infinitesimal, local, and global behavior of the geodesics of the Thurston metric, as well as an analogue of Royden’s theorem.
@article{10_1017_fms_2020_3,
author = {DAVID DUMAS and ANNA LENZHEN and KASRA RAFI and JING TAO},
title = {COARSE {AND} {FINE} {GEOMETRY} {OF} {THE} {THURSTON} {METRIC}},
journal = {Forum of Mathematics, Sigma},
publisher = {mathdoc},
volume = {8},
year = {2020},
doi = {10.1017/fms.2020.3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2020.3/}
}
TY - JOUR AU - DAVID DUMAS AU - ANNA LENZHEN AU - KASRA RAFI AU - JING TAO TI - COARSE AND FINE GEOMETRY OF THE THURSTON METRIC JO - Forum of Mathematics, Sigma PY - 2020 VL - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fms.2020.3/ DO - 10.1017/fms.2020.3 LA - en ID - 10_1017_fms_2020_3 ER -
DAVID DUMAS; ANNA LENZHEN; KASRA RAFI; JING TAO. COARSE AND FINE GEOMETRY OF THE THURSTON METRIC. Forum of Mathematics, Sigma, Tome 8 (2020). doi: 10.1017/fms.2020.3
Cité par Sources :