Almost all Steiner triple systems are almost resolvable
Forum of Mathematics, Sigma, Tome 8 (2020)

Voir la notice de l'article provenant de la source Cambridge University Press

We show that for any n divisible by 3, almost all order-n Steiner triple systems admit a decomposition of almost all their triples into disjoint perfect matchings (that is, almost all Steiner triple systems are almost resolvable).
@article{10_1017_fms_2020_29,
     author = {Asaf Ferber and Matthew Kwan},
     title = {Almost all {Steiner} triple systems are almost resolvable},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {8},
     year = {2020},
     doi = {10.1017/fms.2020.29},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2020.29/}
}
TY  - JOUR
AU  - Asaf Ferber
AU  - Matthew Kwan
TI  - Almost all Steiner triple systems are almost resolvable
JO  - Forum of Mathematics, Sigma
PY  - 2020
VL  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2020.29/
DO  - 10.1017/fms.2020.29
LA  - en
ID  - 10_1017_fms_2020_29
ER  - 
%0 Journal Article
%A Asaf Ferber
%A Matthew Kwan
%T Almost all Steiner triple systems are almost resolvable
%J Forum of Mathematics, Sigma
%D 2020
%V 8
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2020.29/
%R 10.1017/fms.2020.29
%G en
%F 10_1017_fms_2020_29
Asaf Ferber; Matthew Kwan. Almost all Steiner triple systems are almost resolvable. Forum of Mathematics, Sigma, Tome 8 (2020). doi: 10.1017/fms.2020.29

Cité par Sources :