TILTING THEORY FOR GORENSTEIN RINGS IN DIMENSION ONE
Forum of Mathematics, Sigma, Tome 8 (2020)

Voir la notice de l'article provenant de la source Cambridge University Press

In representation theory, commutative algebra and algebraic geometry, it is an important problem to understand when the triangulated category $\mathsf{D}_{\operatorname{sg}}^{\mathbb{Z}}(R)=\text{}\underline{\mathsf{CM}}_{0}^{\mathbb{Z}}R$ admits a tilting (respectively, silting) object for a $\mathbb{Z}$-graded commutative Gorenstein ring $R=\bigoplus _{i\geqslant 0}R_{i}$. Here $\mathsf{D}_{\operatorname{sg}}^{\mathbb{Z}}(R)$ is the singularity category, and $\text{}\underline{\mathsf{CM}}_{0}^{\mathbb{Z}}R$ is the stable category of $\mathbb{Z}$-graded Cohen–Macaulay (CM) $R$-modules, which are locally free at all nonmaximal prime ideals of $R$.In this paper, we give a complete answer to this problem in the case where $\dim R=1$ and $R_{0}$ is a field. We prove that $\text{}\underline{\mathsf{CM}}_{0}^{\mathbb{Z}}R$ always admits a silting object, and that $\text{}\underline{\mathsf{CM}}_{0}^{\mathbb{Z}}R$ admits a tilting object if and only if either $R$ is regular or the $a$-invariant of $R$ is nonnegative. Our silting/tilting object will be given explicitly. We also show that if $R$ is reduced and nonregular, then its $a$-invariant is nonnegative and the above tilting object gives a full strong exceptional collection in $\text{}\underline{\mathsf{CM}}_{0}^{\mathbb{Z}}R=\text{}\underline{\mathsf{CM}}^{\mathbb{Z}}R$.
@article{10_1017_fms_2020_28,
     author = {RAGNAR-OLAF BUCHWEITZ and OSAMU IYAMA and KOTA YAMAURA},
     title = {TILTING {THEORY} {FOR} {GORENSTEIN} {RINGS} {IN} {DIMENSION} {ONE}},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {8},
     year = {2020},
     doi = {10.1017/fms.2020.28},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2020.28/}
}
TY  - JOUR
AU  - RAGNAR-OLAF BUCHWEITZ
AU  - OSAMU IYAMA
AU  - KOTA YAMAURA
TI  - TILTING THEORY FOR GORENSTEIN RINGS IN DIMENSION ONE
JO  - Forum of Mathematics, Sigma
PY  - 2020
VL  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2020.28/
DO  - 10.1017/fms.2020.28
LA  - en
ID  - 10_1017_fms_2020_28
ER  - 
%0 Journal Article
%A RAGNAR-OLAF BUCHWEITZ
%A OSAMU IYAMA
%A KOTA YAMAURA
%T TILTING THEORY FOR GORENSTEIN RINGS IN DIMENSION ONE
%J Forum of Mathematics, Sigma
%D 2020
%V 8
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2020.28/
%R 10.1017/fms.2020.28
%G en
%F 10_1017_fms_2020_28
RAGNAR-OLAF BUCHWEITZ; OSAMU IYAMA; KOTA YAMAURA. TILTING THEORY FOR GORENSTEIN RINGS IN DIMENSION ONE. Forum of Mathematics, Sigma, Tome 8 (2020). doi: 10.1017/fms.2020.28

Cité par Sources :