RELATIVE COMPLETE REDUCIBILITY AND NORMALIZED SUBGROUPS
Forum of Mathematics, Sigma, Tome 8 (2020)

Voir la notice de l'article provenant de la source Cambridge University Press

We study a relative variant of Serre’s notion of $G$-complete reducibility for a reductive algebraic group $G$. We let $K$ be a reductive subgroup of $G$, and consider subgroups of $G$ that normalize the identity component $K^{\circ }$. We show that such a subgroup is relatively $G$-completely reducible with respect to $K$ if and only if its image in the automorphism group of $K^{\circ }$ is completely reducible. This allows us to generalize a number of fundamental results from the absolute to the relative setting. We also derive analogous results for Lie subalgebras of the Lie algebra of $G$, as well as ‘rational’ versions over nonalgebraically closed fields.
@article{10_1017_fms_2020_25,
     author = {MAIKE GRUCHOT and ALASTAIR LITTERICK and GERHARD R\"OHRLE},
     title = {RELATIVE {COMPLETE} {REDUCIBILITY} {AND} {NORMALIZED} {SUBGROUPS}},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {8},
     year = {2020},
     doi = {10.1017/fms.2020.25},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2020.25/}
}
TY  - JOUR
AU  - MAIKE GRUCHOT
AU  - ALASTAIR LITTERICK
AU  - GERHARD RÖHRLE
TI  - RELATIVE COMPLETE REDUCIBILITY AND NORMALIZED SUBGROUPS
JO  - Forum of Mathematics, Sigma
PY  - 2020
VL  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2020.25/
DO  - 10.1017/fms.2020.25
LA  - en
ID  - 10_1017_fms_2020_25
ER  - 
%0 Journal Article
%A MAIKE GRUCHOT
%A ALASTAIR LITTERICK
%A GERHARD RÖHRLE
%T RELATIVE COMPLETE REDUCIBILITY AND NORMALIZED SUBGROUPS
%J Forum of Mathematics, Sigma
%D 2020
%V 8
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2020.25/
%R 10.1017/fms.2020.25
%G en
%F 10_1017_fms_2020_25
MAIKE GRUCHOT; ALASTAIR LITTERICK; GERHARD RÖHRLE. RELATIVE COMPLETE REDUCIBILITY AND NORMALIZED SUBGROUPS. Forum of Mathematics, Sigma, Tome 8 (2020). doi: 10.1017/fms.2020.25

Cité par Sources :