THE LIPMAN–ZARISKI CONJECTURE IN GENUS ONE HIGHER
Forum of Mathematics, Sigma, Tome 8 (2020)

Voir la notice de l'article provenant de la source Cambridge University Press

We prove the Lipman–Zariski conjecture for complex surface singularities with $p_{g}-g-b\leqslant 2$. Here $p_{g}$ is the geometric genus, $g$ is the sum of the genera of exceptional curves and $b$ is the first Betti number of the dual graph. This improves on a previous result of the second author. As an application, we show that a compact complex surface with a locally free tangent sheaf is smooth as soon as it admits two generically linearly independent twisted vector fields and its canonical sheaf has at most two global sections.
@article{10_1017_fms_2020_19,
     author = {HANNAH BERGNER and PATRICK GRAF},
     title = {THE {LIPMAN{\textendash}ZARISKI} {CONJECTURE} {IN} {GENUS} {ONE} {HIGHER}},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {8},
     year = {2020},
     doi = {10.1017/fms.2020.19},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2020.19/}
}
TY  - JOUR
AU  - HANNAH BERGNER
AU  - PATRICK GRAF
TI  - THE LIPMAN–ZARISKI CONJECTURE IN GENUS ONE HIGHER
JO  - Forum of Mathematics, Sigma
PY  - 2020
VL  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2020.19/
DO  - 10.1017/fms.2020.19
LA  - en
ID  - 10_1017_fms_2020_19
ER  - 
%0 Journal Article
%A HANNAH BERGNER
%A PATRICK GRAF
%T THE LIPMAN–ZARISKI CONJECTURE IN GENUS ONE HIGHER
%J Forum of Mathematics, Sigma
%D 2020
%V 8
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2020.19/
%R 10.1017/fms.2020.19
%G en
%F 10_1017_fms_2020_19
HANNAH BERGNER; PATRICK GRAF. THE LIPMAN–ZARISKI CONJECTURE IN GENUS ONE HIGHER. Forum of Mathematics, Sigma, Tome 8 (2020). doi: 10.1017/fms.2020.19

Cité par Sources :