HODGE IDEALS FOR $\mathbb{Q}$-DIVISORS, $V$-FILTRATION, AND MINIMAL EXPONENT
Forum of Mathematics, Sigma, Tome 8 (2020)
Voir la notice de l'article provenant de la source Cambridge University Press
We compute the Hodge ideals of $\mathbb{Q}$-divisors in terms of the $V$-filtration induced by a local defining equation, inspired by a result of Saito in the reduced case. We deduce basic properties of Hodge ideals in this generality, and relate them to Bernstein–Sato polynomials. As a consequence of our study we establish general properties of the minimal exponent, a refined version of the log canonical threshold, and bound it in terms of discrepancies on log resolutions, addressing a question of Lichtin and Kollár.
@article{10_1017_fms_2020_18,
author = {MIRCEA MUSTA\c{T}\u{A} and MIHNEA POPA},
title = {HODGE {IDEALS} {FOR} $\mathbb{Q}${-DIVISORS,} $V${-FILTRATION,} {AND} {MINIMAL} {EXPONENT}},
journal = {Forum of Mathematics, Sigma},
publisher = {mathdoc},
volume = {8},
year = {2020},
doi = {10.1017/fms.2020.18},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2020.18/}
}
TY - JOUR
AU - MIRCEA MUSTAŢĂ
AU - MIHNEA POPA
TI - HODGE IDEALS FOR $\mathbb{Q}$-DIVISORS, $V$-FILTRATION, AND MINIMAL EXPONENT
JO - Forum of Mathematics, Sigma
PY - 2020
VL - 8
PB - mathdoc
UR - http://geodesic.mathdoc.fr/articles/10.1017/fms.2020.18/
DO - 10.1017/fms.2020.18
LA - en
ID - 10_1017_fms_2020_18
ER -
MIRCEA MUSTAŢĂ; MIHNEA POPA. HODGE IDEALS FOR $\mathbb{Q}$-DIVISORS, $V$-FILTRATION, AND MINIMAL EXPONENT. Forum of Mathematics, Sigma, Tome 8 (2020). doi: 10.1017/fms.2020.18
Cité par Sources :