HODGE IDEALS FOR $\mathbb{Q}$-DIVISORS, $V$-FILTRATION, AND MINIMAL EXPONENT
Forum of Mathematics, Sigma, Tome 8 (2020)

Voir la notice de l'article provenant de la source Cambridge University Press

We compute the Hodge ideals of $\mathbb{Q}$-divisors in terms of the $V$-filtration induced by a local defining equation, inspired by a result of Saito in the reduced case. We deduce basic properties of Hodge ideals in this generality, and relate them to Bernstein–Sato polynomials. As a consequence of our study we establish general properties of the minimal exponent, a refined version of the log canonical threshold, and bound it in terms of discrepancies on log resolutions, addressing a question of Lichtin and Kollár.
@article{10_1017_fms_2020_18,
     author = {MIRCEA MUSTA\c{T}\u{A} and MIHNEA POPA},
     title = {HODGE {IDEALS} {FOR} $\mathbb{Q}${-DIVISORS,} $V${-FILTRATION,} {AND} {MINIMAL} {EXPONENT}},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {8},
     year = {2020},
     doi = {10.1017/fms.2020.18},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2020.18/}
}
TY  - JOUR
AU  - MIRCEA MUSTAŢĂ
AU  - MIHNEA POPA
TI  - HODGE IDEALS FOR $\mathbb{Q}$-DIVISORS, $V$-FILTRATION, AND MINIMAL EXPONENT
JO  - Forum of Mathematics, Sigma
PY  - 2020
VL  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2020.18/
DO  - 10.1017/fms.2020.18
LA  - en
ID  - 10_1017_fms_2020_18
ER  - 
%0 Journal Article
%A MIRCEA MUSTAŢĂ
%A MIHNEA POPA
%T HODGE IDEALS FOR $\mathbb{Q}$-DIVISORS, $V$-FILTRATION, AND MINIMAL EXPONENT
%J Forum of Mathematics, Sigma
%D 2020
%V 8
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2020.18/
%R 10.1017/fms.2020.18
%G en
%F 10_1017_fms_2020_18
MIRCEA MUSTAŢĂ; MIHNEA POPA. HODGE IDEALS FOR $\mathbb{Q}$-DIVISORS, $V$-FILTRATION, AND MINIMAL EXPONENT. Forum of Mathematics, Sigma, Tome 8 (2020). doi: 10.1017/fms.2020.18

Cité par Sources :