A MODULI STACK OF TROPICAL CURVES
Forum of Mathematics, Sigma, Tome 8 (2020)
Voir la notice de l'article provenant de la source Cambridge University Press
We contribute to the foundations of tropical geometry with a view toward formulating tropical moduli problems, and with the moduli space of curves as our main example. We propose a moduli functor for the moduli space of curves and show that it is representable by a geometric stack over the category of rational polyhedral cones. In this framework, the natural forgetful morphisms between moduli spaces of curves with marked points function as universal curves.Our approach to tropical geometry permits tropical moduli problems—moduli of curves or otherwise—to be extended to logarithmic schemes. We use this to construct a smooth tropicalization morphism from the moduli space of algebraic curves to the moduli space of tropical curves, and we show that this morphism commutes with all of the tautological morphisms.
@article{10_1017_fms_2020_16,
author = {RENZO CAVALIERI and MELODY CHAN and MARTIN ULIRSCH and JONATHAN WISE},
title = {A {MODULI} {STACK} {OF} {TROPICAL} {CURVES}},
journal = {Forum of Mathematics, Sigma},
publisher = {mathdoc},
volume = {8},
year = {2020},
doi = {10.1017/fms.2020.16},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2020.16/}
}
TY - JOUR AU - RENZO CAVALIERI AU - MELODY CHAN AU - MARTIN ULIRSCH AU - JONATHAN WISE TI - A MODULI STACK OF TROPICAL CURVES JO - Forum of Mathematics, Sigma PY - 2020 VL - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fms.2020.16/ DO - 10.1017/fms.2020.16 LA - en ID - 10_1017_fms_2020_16 ER -
RENZO CAVALIERI; MELODY CHAN; MARTIN ULIRSCH; JONATHAN WISE. A MODULI STACK OF TROPICAL CURVES. Forum of Mathematics, Sigma, Tome 8 (2020). doi: 10.1017/fms.2020.16
Cité par Sources :