INNER AMENABLE GROUPOIDS AND CENTRAL SEQUENCES
Forum of Mathematics, Sigma, Tome 8 (2020)

Voir la notice de l'article provenant de la source Cambridge University Press

We introduce inner amenability for discrete probability-measure-preserving (p.m.p.) groupoids and investigate its basic properties, examples, and the connection with central sequences in the full group of the groupoid or central sequences in the von Neumann algebra associated with the groupoid. Among other things, we show that every free ergodic p.m.p. compact action of an inner amenable group gives rise to an inner amenable orbit equivalence relation. We also obtain an analogous result for compact extensions of equivalence relations that either are stable or have a nontrivial central sequence in their full group.
@article{10_1017_fms_2020_15,
     author = {YOSHIKATA KIDA and ROBIN TUCKER-DROB},
     title = {INNER {AMENABLE} {GROUPOIDS} {AND} {CENTRAL} {SEQUENCES}},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {8},
     year = {2020},
     doi = {10.1017/fms.2020.15},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2020.15/}
}
TY  - JOUR
AU  - YOSHIKATA KIDA
AU  - ROBIN TUCKER-DROB
TI  - INNER AMENABLE GROUPOIDS AND CENTRAL SEQUENCES
JO  - Forum of Mathematics, Sigma
PY  - 2020
VL  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2020.15/
DO  - 10.1017/fms.2020.15
LA  - en
ID  - 10_1017_fms_2020_15
ER  - 
%0 Journal Article
%A YOSHIKATA KIDA
%A ROBIN TUCKER-DROB
%T INNER AMENABLE GROUPOIDS AND CENTRAL SEQUENCES
%J Forum of Mathematics, Sigma
%D 2020
%V 8
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2020.15/
%R 10.1017/fms.2020.15
%G en
%F 10_1017_fms_2020_15
YOSHIKATA KIDA; ROBIN TUCKER-DROB. INNER AMENABLE GROUPOIDS AND CENTRAL SEQUENCES. Forum of Mathematics, Sigma, Tome 8 (2020). doi: 10.1017/fms.2020.15

Cité par Sources :