MULTIPLICATIVE PARAMETRIZED HOMOTOPY THEORY VIA SYMMETRIC SPECTRA IN RETRACTIVE SPACES
Forum of Mathematics, Sigma, Tome 8 (2020)
Voir la notice de l'article provenant de la source Cambridge University Press
In order to treat multiplicative phenomena in twisted (co)homology, we introduce a new point-set-level framework for parametrized homotopy theory. We provide a convolution smash product that descends to the corresponding $\infty$-categorical product and allows for convenient constructions of commutative parametrized ring spectra. As an immediate application, we compare various models for generalized Thom spectra. In a companion paper, this approach is used to compare homotopical and operator algebraic models for twisted $K$-theory.
@article{10_1017_fms_2020_11,
author = {FABIAN HEBESTREIT and STEFFEN SAGAVE and CHRISTIAN SCHLICHTKRULL},
title = {MULTIPLICATIVE {PARAMETRIZED} {HOMOTOPY} {THEORY} {VIA} {SYMMETRIC} {SPECTRA} {IN} {RETRACTIVE} {SPACES}},
journal = {Forum of Mathematics, Sigma},
publisher = {mathdoc},
volume = {8},
year = {2020},
doi = {10.1017/fms.2020.11},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2020.11/}
}
TY - JOUR AU - FABIAN HEBESTREIT AU - STEFFEN SAGAVE AU - CHRISTIAN SCHLICHTKRULL TI - MULTIPLICATIVE PARAMETRIZED HOMOTOPY THEORY VIA SYMMETRIC SPECTRA IN RETRACTIVE SPACES JO - Forum of Mathematics, Sigma PY - 2020 VL - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fms.2020.11/ DO - 10.1017/fms.2020.11 LA - en ID - 10_1017_fms_2020_11 ER -
%0 Journal Article %A FABIAN HEBESTREIT %A STEFFEN SAGAVE %A CHRISTIAN SCHLICHTKRULL %T MULTIPLICATIVE PARAMETRIZED HOMOTOPY THEORY VIA SYMMETRIC SPECTRA IN RETRACTIVE SPACES %J Forum of Mathematics, Sigma %D 2020 %V 8 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1017/fms.2020.11/ %R 10.1017/fms.2020.11 %G en %F 10_1017_fms_2020_11
FABIAN HEBESTREIT; STEFFEN SAGAVE; CHRISTIAN SCHLICHTKRULL. MULTIPLICATIVE PARAMETRIZED HOMOTOPY THEORY VIA SYMMETRIC SPECTRA IN RETRACTIVE SPACES. Forum of Mathematics, Sigma, Tome 8 (2020). doi: 10.1017/fms.2020.11
Cité par Sources :