MULTIPLICATIVE PARAMETRIZED HOMOTOPY THEORY VIA SYMMETRIC SPECTRA IN RETRACTIVE SPACES
Forum of Mathematics, Sigma, Tome 8 (2020)

Voir la notice de l'article provenant de la source Cambridge University Press

In order to treat multiplicative phenomena in twisted (co)homology, we introduce a new point-set-level framework for parametrized homotopy theory. We provide a convolution smash product that descends to the corresponding $\infty$-categorical product and allows for convenient constructions of commutative parametrized ring spectra. As an immediate application, we compare various models for generalized Thom spectra. In a companion paper, this approach is used to compare homotopical and operator algebraic models for twisted $K$-theory.
@article{10_1017_fms_2020_11,
     author = {FABIAN HEBESTREIT and STEFFEN SAGAVE and CHRISTIAN SCHLICHTKRULL},
     title = {MULTIPLICATIVE {PARAMETRIZED} {HOMOTOPY} {THEORY} {VIA} {SYMMETRIC} {SPECTRA} {IN} {RETRACTIVE} {SPACES}},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {8},
     year = {2020},
     doi = {10.1017/fms.2020.11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2020.11/}
}
TY  - JOUR
AU  - FABIAN HEBESTREIT
AU  - STEFFEN SAGAVE
AU  - CHRISTIAN SCHLICHTKRULL
TI  - MULTIPLICATIVE PARAMETRIZED HOMOTOPY THEORY VIA SYMMETRIC SPECTRA IN RETRACTIVE SPACES
JO  - Forum of Mathematics, Sigma
PY  - 2020
VL  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2020.11/
DO  - 10.1017/fms.2020.11
LA  - en
ID  - 10_1017_fms_2020_11
ER  - 
%0 Journal Article
%A FABIAN HEBESTREIT
%A STEFFEN SAGAVE
%A CHRISTIAN SCHLICHTKRULL
%T MULTIPLICATIVE PARAMETRIZED HOMOTOPY THEORY VIA SYMMETRIC SPECTRA IN RETRACTIVE SPACES
%J Forum of Mathematics, Sigma
%D 2020
%V 8
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2020.11/
%R 10.1017/fms.2020.11
%G en
%F 10_1017_fms_2020_11
FABIAN HEBESTREIT; STEFFEN SAGAVE; CHRISTIAN SCHLICHTKRULL. MULTIPLICATIVE PARAMETRIZED HOMOTOPY THEORY VIA SYMMETRIC SPECTRA IN RETRACTIVE SPACES. Forum of Mathematics, Sigma, Tome 8 (2020). doi: 10.1017/fms.2020.11

Cité par Sources :