ON NONUNIQUENESS FOR THE ANISOTROPIC CALDERÓN PROBLEM WITH PARTIAL DATA
Forum of Mathematics, Sigma, Tome 8 (2020)

Voir la notice de l'article provenant de la source Cambridge University Press

We show that there is nonuniqueness for the Calderón problem with partial data for Riemannian metrics with Hölder continuous coefficients in dimension greater than or equal to three. We provide simple counterexamples in the case of cylindrical Riemannian manifolds with boundary having two ends. The coefficients of these metrics are smooth in the interior of the manifold and are only Hölder continuous of order $\unicode[STIX]{x1D70C}1$ at the end where the measurements are made. More precisely, we construct a toroidal ring $(M,g)$ and we show that there exist in the conformal class of $g$ an infinite number of Riemannian metrics $\tilde{g}=c^{4}g$ such that their corresponding partial Dirichlet-to-Neumann maps at one end coincide. The corresponding smooth conformal factors are harmonic with respect to the metric $g$ and do not satisfy the unique continuation principle.
@article{10_1017_fms_2020_1,
     author = {THIERRY DAUD\'E and NIKY KAMRAN and FRAN\c{C}OIS NICOLEAU},
     title = {ON {NONUNIQUENESS} {FOR} {THE} {ANISOTROPIC} {CALDER\'ON} {PROBLEM} {WITH} {PARTIAL} {DATA}},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {8},
     year = {2020},
     doi = {10.1017/fms.2020.1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2020.1/}
}
TY  - JOUR
AU  - THIERRY DAUDÉ
AU  - NIKY KAMRAN
AU  - FRANÇOIS NICOLEAU
TI  - ON NONUNIQUENESS FOR THE ANISOTROPIC CALDERÓN PROBLEM WITH PARTIAL DATA
JO  - Forum of Mathematics, Sigma
PY  - 2020
VL  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2020.1/
DO  - 10.1017/fms.2020.1
LA  - en
ID  - 10_1017_fms_2020_1
ER  - 
%0 Journal Article
%A THIERRY DAUDÉ
%A NIKY KAMRAN
%A FRANÇOIS NICOLEAU
%T ON NONUNIQUENESS FOR THE ANISOTROPIC CALDERÓN PROBLEM WITH PARTIAL DATA
%J Forum of Mathematics, Sigma
%D 2020
%V 8
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2020.1/
%R 10.1017/fms.2020.1
%G en
%F 10_1017_fms_2020_1
THIERRY DAUDÉ; NIKY KAMRAN; FRANÇOIS NICOLEAU. ON NONUNIQUENESS FOR THE ANISOTROPIC CALDERÓN PROBLEM WITH PARTIAL DATA. Forum of Mathematics, Sigma, Tome 8 (2020). doi: 10.1017/fms.2020.1

Cité par Sources :