FORCING QUASIRANDOMNESS WITH TRIANGLES
    
    
  
  
  
      
      
      
        
Forum of Mathematics, Sigma, Tome 7 (2019)
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Cambridge University Press
            
              We study forcing pairs for quasirandom graphs. Chung, Graham, and Wilson initiated the study of families ${\mathcal{F}}$ of graphs with the property that if a large graph $G$ has approximately homomorphism density $p^{e(F)}$ for some fixed $p\in (0,1]$ for every $F\in {\mathcal{F}}$, then $G$ is quasirandom with density $p$. Such families ${\mathcal{F}}$ are said to be forcing. Several forcing families were found over the last three decades and characterizing all bipartite graphs $F$ such that $(K_{2},F)$ is a forcing pair is a well-known open problem in the area of quasirandom graphs, which is closely related to Sidorenko’s conjecture. In fact, most of the known forcing families involve bipartite graphs only.We consider forcing pairs containing the triangle $K_{3}$. In particular, we show that if $(K_{2},F)$ is a forcing pair, then so is $(K_{3},F^{\rhd })$, where $F^{\rhd }$ is obtained from $F$ by replacing every edge of $F$ by a triangle (each of which introduces a new vertex). For the proof we first show that $(K_{3},C_{4}^{\rhd })$ is a forcing pair, which strengthens related results of Simonovits and Sós and of Conlon et al.
            
            
            
          
        
      @article{10_1017_fms_2019_7,
     author = {CHRISTIAN REIHER and MATHIAS SCHACHT},
     title = {FORCING {QUASIRANDOMNESS} {WITH} {TRIANGLES}},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {7},
     year = {2019},
     doi = {10.1017/fms.2019.7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2019.7/}
}
                      
                      
                    CHRISTIAN REIHER; MATHIAS SCHACHT. FORCING QUASIRANDOMNESS WITH TRIANGLES. Forum of Mathematics, Sigma, Tome 7 (2019). doi: 10.1017/fms.2019.7
Cité par Sources :