$F$-SIGNATURE UNDER BIRATIONAL MORPHISMS
Forum of Mathematics, Sigma, Tome 7 (2019)

Voir la notice de l'article provenant de la source Cambridge University Press

We study $F$-signature under proper birational morphisms $\unicode[STIX]{x1D70B}:Y\rightarrow X$, showing that $F$-signature strictly increases for small morphisms or if $K_{Y}\leqslant \unicode[STIX]{x1D70B}^{\ast }K_{X}$. In certain cases, we can even show that the $F$-signature of $Y$ is at least twice as that of $X$. We also provide examples of $F$-signature dropping and Hilbert–Kunz multiplicity increasing under birational maps without these hypotheses.
@article{10_1017_fms_2019_6,
     author = {LINQUAN MA and THOMAS POLSTRA and KARL SCHWEDE and KEVIN TUCKER},
     title = {$F${-SIGNATURE} {UNDER} {BIRATIONAL} {MORPHISMS}},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {7},
     year = {2019},
     doi = {10.1017/fms.2019.6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2019.6/}
}
TY  - JOUR
AU  - LINQUAN MA
AU  - THOMAS POLSTRA
AU  - KARL SCHWEDE
AU  - KEVIN TUCKER
TI  - $F$-SIGNATURE UNDER BIRATIONAL MORPHISMS
JO  - Forum of Mathematics, Sigma
PY  - 2019
VL  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2019.6/
DO  - 10.1017/fms.2019.6
LA  - en
ID  - 10_1017_fms_2019_6
ER  - 
%0 Journal Article
%A LINQUAN MA
%A THOMAS POLSTRA
%A KARL SCHWEDE
%A KEVIN TUCKER
%T $F$-SIGNATURE UNDER BIRATIONAL MORPHISMS
%J Forum of Mathematics, Sigma
%D 2019
%V 7
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2019.6/
%R 10.1017/fms.2019.6
%G en
%F 10_1017_fms_2019_6
LINQUAN MA; THOMAS POLSTRA; KARL SCHWEDE; KEVIN TUCKER. $F$-SIGNATURE UNDER BIRATIONAL MORPHISMS. Forum of Mathematics, Sigma, Tome 7 (2019). doi: 10.1017/fms.2019.6

Cité par Sources :