$F$-SIGNATURE UNDER BIRATIONAL MORPHISMS
    
    
  
  
  
      
      
      
        
Forum of Mathematics, Sigma, Tome 7 (2019)
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Cambridge University Press
            
              We study $F$-signature under proper birational morphisms $\unicode[STIX]{x1D70B}:Y\rightarrow X$, showing that $F$-signature strictly increases for small morphisms or if $K_{Y}\leqslant \unicode[STIX]{x1D70B}^{\ast }K_{X}$. In certain cases, we can even show that the $F$-signature of $Y$ is at least twice as that of $X$. We also provide examples of $F$-signature dropping and Hilbert–Kunz multiplicity increasing under birational maps without these hypotheses.
            
            
            
          
        
      @article{10_1017_fms_2019_6,
     author = {LINQUAN MA and THOMAS POLSTRA and KARL SCHWEDE and KEVIN TUCKER},
     title = {$F${-SIGNATURE} {UNDER} {BIRATIONAL} {MORPHISMS}},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {7},
     year = {2019},
     doi = {10.1017/fms.2019.6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2019.6/}
}
                      
                      
                    TY - JOUR AU - LINQUAN MA AU - THOMAS POLSTRA AU - KARL SCHWEDE AU - KEVIN TUCKER TI - $F$-SIGNATURE UNDER BIRATIONAL MORPHISMS JO - Forum of Mathematics, Sigma PY - 2019 VL - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fms.2019.6/ DO - 10.1017/fms.2019.6 LA - en ID - 10_1017_fms_2019_6 ER -
LINQUAN MA; THOMAS POLSTRA; KARL SCHWEDE; KEVIN TUCKER. $F$-SIGNATURE UNDER BIRATIONAL MORPHISMS. Forum of Mathematics, Sigma, Tome 7 (2019). doi: 10.1017/fms.2019.6
Cité par Sources :