SPLITTING LOOPS AND NECKLACES: VARIANTS OF THE SQUARE PEG PROBLEM
Forum of Mathematics, Sigma, Tome 8 (2020)

Voir la notice de l'article provenant de la source Cambridge University Press

Toeplitz conjectured that any simple planar loop inscribes a square. Here we prove variants of Toeplitz’s square peg problem. We prove Hadwiger’s 1971 conjecture that any simple loop in $3$-space inscribes a parallelogram. We show that any simple planar loop inscribes sufficiently many rectangles that their vertices are dense in the loop. If the loop is rectifiable, there is a rectangle that cuts the loop into four pieces which can be rearranged to form two loops of equal length. (The previous two results are independently due to Schwartz.) A rectifiable loop in $d$-space can be cut into $(r-1)(d+1)+1$ pieces that can be rearranged by translations to form $r$ loops of equal length. We relate our results to fair divisions of necklaces in the sense of Alon and to Tverberg-type results. This provides a new approach and a common framework to obtain inscribability results for the class of all continuous curves.
@article{10_1017_fms_2019_51,
     author = {JAI ASLAM and SHUJIAN CHEN and FLORIAN FRICK and SAM SALOFF-COSTE and LINUS SETIABRATA and HUGH THOMAS},
     title = {SPLITTING {LOOPS} {AND} {NECKLACES:} {VARIANTS} {OF} {THE} {SQUARE} {PEG} {PROBLEM}},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {8},
     year = {2020},
     doi = {10.1017/fms.2019.51},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2019.51/}
}
TY  - JOUR
AU  - JAI ASLAM
AU  - SHUJIAN CHEN
AU  - FLORIAN FRICK
AU  - SAM SALOFF-COSTE
AU  - LINUS SETIABRATA
AU  - HUGH THOMAS
TI  - SPLITTING LOOPS AND NECKLACES: VARIANTS OF THE SQUARE PEG PROBLEM
JO  - Forum of Mathematics, Sigma
PY  - 2020
VL  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2019.51/
DO  - 10.1017/fms.2019.51
LA  - en
ID  - 10_1017_fms_2019_51
ER  - 
%0 Journal Article
%A JAI ASLAM
%A SHUJIAN CHEN
%A FLORIAN FRICK
%A SAM SALOFF-COSTE
%A LINUS SETIABRATA
%A HUGH THOMAS
%T SPLITTING LOOPS AND NECKLACES: VARIANTS OF THE SQUARE PEG PROBLEM
%J Forum of Mathematics, Sigma
%D 2020
%V 8
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2019.51/
%R 10.1017/fms.2019.51
%G en
%F 10_1017_fms_2019_51
JAI ASLAM; SHUJIAN CHEN; FLORIAN FRICK; SAM SALOFF-COSTE; LINUS SETIABRATA; HUGH THOMAS. SPLITTING LOOPS AND NECKLACES: VARIANTS OF THE SQUARE PEG PROBLEM. Forum of Mathematics, Sigma, Tome 8 (2020). doi: 10.1017/fms.2019.51

Cité par Sources :