ON THE EXISTENCE OF ADMISSIBLE SUPERSINGULAR REPRESENTATIONS OF $p$-ADIC REDUCTIVE GROUPS
Forum of Mathematics, Sigma, Tome 8 (2020)

Voir la notice de l'article provenant de la source Cambridge University Press

Suppose that $\mathbf{G}$ is a connected reductive group over a finite extension $F/\mathbb{Q}_{p}$ and that $C$ is a field of characteristic $p$. We prove that the group $\mathbf{G}(F)$ admits an irreducible admissible supercuspidal, or equivalently supersingular, representation over $C$.
@article{10_1017_fms_2019_50,
     author = {FLORIAN HERZIG and KAROL KOZIO{\L} and MARIE-FRANCE VIGN\'ERAS},
     title = {ON {THE} {EXISTENCE} {OF} {ADMISSIBLE} {SUPERSINGULAR} {REPRESENTATIONS} {OF} $p${-ADIC} {REDUCTIVE} {GROUPS}},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {8},
     year = {2020},
     doi = {10.1017/fms.2019.50},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2019.50/}
}
TY  - JOUR
AU  - FLORIAN HERZIG
AU  - KAROL KOZIOŁ
AU  - MARIE-FRANCE VIGNÉRAS
TI  - ON THE EXISTENCE OF ADMISSIBLE SUPERSINGULAR REPRESENTATIONS OF $p$-ADIC REDUCTIVE GROUPS
JO  - Forum of Mathematics, Sigma
PY  - 2020
VL  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2019.50/
DO  - 10.1017/fms.2019.50
LA  - en
ID  - 10_1017_fms_2019_50
ER  - 
%0 Journal Article
%A FLORIAN HERZIG
%A KAROL KOZIOŁ
%A MARIE-FRANCE VIGNÉRAS
%T ON THE EXISTENCE OF ADMISSIBLE SUPERSINGULAR REPRESENTATIONS OF $p$-ADIC REDUCTIVE GROUPS
%J Forum of Mathematics, Sigma
%D 2020
%V 8
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2019.50/
%R 10.1017/fms.2019.50
%G en
%F 10_1017_fms_2019_50
FLORIAN HERZIG; KAROL KOZIOŁ; MARIE-FRANCE VIGNÉRAS. ON THE EXISTENCE OF ADMISSIBLE SUPERSINGULAR REPRESENTATIONS OF $p$-ADIC REDUCTIVE GROUPS. Forum of Mathematics, Sigma, Tome 8 (2020). doi: 10.1017/fms.2019.50

Cité par Sources :