ON THE EXISTENCE OF ADMISSIBLE SUPERSINGULAR REPRESENTATIONS OF $p$-ADIC REDUCTIVE GROUPS
Forum of Mathematics, Sigma, Tome 8 (2020)
Voir la notice de l'article provenant de la source Cambridge University Press
Suppose that $\mathbf{G}$ is a connected reductive group over a finite extension $F/\mathbb{Q}_{p}$ and that $C$ is a field of characteristic $p$. We prove that the group $\mathbf{G}(F)$ admits an irreducible admissible supercuspidal, or equivalently supersingular, representation over $C$.
@article{10_1017_fms_2019_50,
author = {FLORIAN HERZIG and KAROL KOZIO{\L} and MARIE-FRANCE VIGN\'ERAS},
title = {ON {THE} {EXISTENCE} {OF} {ADMISSIBLE} {SUPERSINGULAR} {REPRESENTATIONS} {OF} $p${-ADIC} {REDUCTIVE} {GROUPS}},
journal = {Forum of Mathematics, Sigma},
publisher = {mathdoc},
volume = {8},
year = {2020},
doi = {10.1017/fms.2019.50},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2019.50/}
}
TY - JOUR AU - FLORIAN HERZIG AU - KAROL KOZIOŁ AU - MARIE-FRANCE VIGNÉRAS TI - ON THE EXISTENCE OF ADMISSIBLE SUPERSINGULAR REPRESENTATIONS OF $p$-ADIC REDUCTIVE GROUPS JO - Forum of Mathematics, Sigma PY - 2020 VL - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fms.2019.50/ DO - 10.1017/fms.2019.50 LA - en ID - 10_1017_fms_2019_50 ER -
%0 Journal Article %A FLORIAN HERZIG %A KAROL KOZIOŁ %A MARIE-FRANCE VIGNÉRAS %T ON THE EXISTENCE OF ADMISSIBLE SUPERSINGULAR REPRESENTATIONS OF $p$-ADIC REDUCTIVE GROUPS %J Forum of Mathematics, Sigma %D 2020 %V 8 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1017/fms.2019.50/ %R 10.1017/fms.2019.50 %G en %F 10_1017_fms_2019_50
FLORIAN HERZIG; KAROL KOZIOŁ; MARIE-FRANCE VIGNÉRAS. ON THE EXISTENCE OF ADMISSIBLE SUPERSINGULAR REPRESENTATIONS OF $p$-ADIC REDUCTIVE GROUPS. Forum of Mathematics, Sigma, Tome 8 (2020). doi: 10.1017/fms.2019.50
Cité par Sources :