OPTIMAL LINE PACKINGS FROM FINITE GROUP ACTIONS
Forum of Mathematics, Sigma, Tome 8 (2020)
Voir la notice de l'article provenant de la source Cambridge University Press
We provide a general program for finding nice arrangements of points inreal or complex projective space from transitive actions of finite groups. In many cases, these arrangements are optimal in the sense of maximizing the minimum distance. We introduce our program in terms of general Schurian association schemes before focusing on the special case of Gelfand pairs. Notably, our program unifies a variety of existing packings with heretofore disparate constructions. In addition, we leverage our program to construct the first known infinite family of equiangular lines with Heisenberg symmetry.
@article{10_1017_fms_2019_48,
author = {JOSEPH W. IVERSON and JOHN JASPER and DUSTIN G. MIXON},
title = {OPTIMAL {LINE} {PACKINGS} {FROM} {FINITE} {GROUP} {ACTIONS}},
journal = {Forum of Mathematics, Sigma},
publisher = {mathdoc},
volume = {8},
year = {2020},
doi = {10.1017/fms.2019.48},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2019.48/}
}
TY - JOUR AU - JOSEPH W. IVERSON AU - JOHN JASPER AU - DUSTIN G. MIXON TI - OPTIMAL LINE PACKINGS FROM FINITE GROUP ACTIONS JO - Forum of Mathematics, Sigma PY - 2020 VL - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fms.2019.48/ DO - 10.1017/fms.2019.48 LA - en ID - 10_1017_fms_2019_48 ER -
JOSEPH W. IVERSON; JOHN JASPER; DUSTIN G. MIXON. OPTIMAL LINE PACKINGS FROM FINITE GROUP ACTIONS. Forum of Mathematics, Sigma, Tome 8 (2020). doi: 10.1017/fms.2019.48
Cité par Sources :