A DISTRIBUTION ON TRIPLES WITH MAXIMUM ENTROPY MARGINAL
Forum of Mathematics, Sigma, Tome 7 (2019)
Voir la notice de l'article provenant de la source Cambridge University Press
We construct an $S_{3}$-symmetric probability distribution on $\{(a,b,c)\in \mathbb{Z}_{{\geqslant}0}^{3}\,:\,a+b+c=n\}$ such that its marginal achieves the maximum entropy among all probability distributions on $\{0,1,\ldots ,n\}$ with mean $n/3$. Existence of such a distribution verifies a conjecture of Kleinberg et al. [‘The growth rate of tri-colored sum-free sets’, Discrete Anal. (2018), Paper No. 12, arXiv:1607.00047v1], which is motivated by the study of sum-free sets.
@article{10_1017_fms_2019_47,
author = {SERGEY NORIN},
title = {A {DISTRIBUTION} {ON} {TRIPLES} {WITH} {MAXIMUM} {ENTROPY} {MARGINAL}},
journal = {Forum of Mathematics, Sigma},
publisher = {mathdoc},
volume = {7},
year = {2019},
doi = {10.1017/fms.2019.47},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2019.47/}
}
SERGEY NORIN. A DISTRIBUTION ON TRIPLES WITH MAXIMUM ENTROPY MARGINAL. Forum of Mathematics, Sigma, Tome 7 (2019). doi: 10.1017/fms.2019.47
Cité par Sources :