FINE DELIGNE–LUSZTIG VARIETIES AND ARITHMETIC FUNDAMENTAL LEMMAS
    
    
  
  
  
      
      
      
        
Forum of Mathematics, Sigma, Tome 7 (2019)
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Cambridge University Press
            
              We prove a character formula for some closed fine Deligne–Lusztig varieties. We apply it to compute fixed points for fine Deligne–Lusztig varieties arising from the basic loci of Shimura varieties of Coxeter type. As an application, we prove an arithmetic intersection formula for certain diagonal cycles on unitary and GSpin Rapoport–Zink spaces arising from the arithmetic Gan–Gross–Prasad conjectures. In particular, we prove the arithmetic fundamental lemma in the minuscule case, without assumptions on the residual characteristic.
            
            
            
          
        
      @article{10_1017_fms_2019_45,
     author = {XUHUA HE and CHAO LI and YIHANG ZHU},
     title = {FINE {DELIGNE{\textendash}LUSZTIG} {VARIETIES} {AND} {ARITHMETIC} {FUNDAMENTAL} {LEMMAS}},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {7},
     year = {2019},
     doi = {10.1017/fms.2019.45},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2019.45/}
}
                      
                      
                    TY - JOUR AU - XUHUA HE AU - CHAO LI AU - YIHANG ZHU TI - FINE DELIGNE–LUSZTIG VARIETIES AND ARITHMETIC FUNDAMENTAL LEMMAS JO - Forum of Mathematics, Sigma PY - 2019 VL - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fms.2019.45/ DO - 10.1017/fms.2019.45 LA - en ID - 10_1017_fms_2019_45 ER -
XUHUA HE; CHAO LI; YIHANG ZHU. FINE DELIGNE–LUSZTIG VARIETIES AND ARITHMETIC FUNDAMENTAL LEMMAS. Forum of Mathematics, Sigma, Tome 7 (2019). doi: 10.1017/fms.2019.45
Cité par Sources :