FINE DELIGNE–LUSZTIG VARIETIES AND ARITHMETIC FUNDAMENTAL LEMMAS
Forum of Mathematics, Sigma, Tome 7 (2019)

Voir la notice de l'article provenant de la source Cambridge University Press

We prove a character formula for some closed fine Deligne–Lusztig varieties. We apply it to compute fixed points for fine Deligne–Lusztig varieties arising from the basic loci of Shimura varieties of Coxeter type. As an application, we prove an arithmetic intersection formula for certain diagonal cycles on unitary and GSpin Rapoport–Zink spaces arising from the arithmetic Gan–Gross–Prasad conjectures. In particular, we prove the arithmetic fundamental lemma in the minuscule case, without assumptions on the residual characteristic.
@article{10_1017_fms_2019_45,
     author = {XUHUA HE and CHAO LI and YIHANG ZHU},
     title = {FINE {DELIGNE{\textendash}LUSZTIG} {VARIETIES} {AND} {ARITHMETIC} {FUNDAMENTAL} {LEMMAS}},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {7},
     year = {2019},
     doi = {10.1017/fms.2019.45},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2019.45/}
}
TY  - JOUR
AU  - XUHUA HE
AU  - CHAO LI
AU  - YIHANG ZHU
TI  - FINE DELIGNE–LUSZTIG VARIETIES AND ARITHMETIC FUNDAMENTAL LEMMAS
JO  - Forum of Mathematics, Sigma
PY  - 2019
VL  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2019.45/
DO  - 10.1017/fms.2019.45
LA  - en
ID  - 10_1017_fms_2019_45
ER  - 
%0 Journal Article
%A XUHUA HE
%A CHAO LI
%A YIHANG ZHU
%T FINE DELIGNE–LUSZTIG VARIETIES AND ARITHMETIC FUNDAMENTAL LEMMAS
%J Forum of Mathematics, Sigma
%D 2019
%V 7
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2019.45/
%R 10.1017/fms.2019.45
%G en
%F 10_1017_fms_2019_45
XUHUA HE; CHAO LI; YIHANG ZHU. FINE DELIGNE–LUSZTIG VARIETIES AND ARITHMETIC FUNDAMENTAL LEMMAS. Forum of Mathematics, Sigma, Tome 7 (2019). doi: 10.1017/fms.2019.45

Cité par Sources :