GENERATING MAXIMAL SUBGROUPS OF FINITE ALMOST SIMPLE GROUPS
Forum of Mathematics, Sigma, Tome 8 (2020)

Voir la notice de l'article provenant de la source Cambridge University Press

For a finite group $G$, let $d(G)$ denote the minimal number of elements required to generate $G$. In this paper, we prove sharp upper bounds on $d(H)$ whenever $H$ is a maximal subgroup of a finite almost simple group. In particular, we show that $d(H)\leqslant 5$ and that $d(H)\geqslant 4$ if and only if $H$ occurs in a known list. This improves a result of Burness, Liebeck and Shalev. The method involves the theory of crowns in finite groups.
@article{10_1017_fms_2019_43,
     author = {ANDREA LUCCHINI and CLAUDE MARION and GARETH TRACEY},
     title = {GENERATING {MAXIMAL} {SUBGROUPS} {OF} {FINITE} {ALMOST} {SIMPLE} {GROUPS}},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {8},
     year = {2020},
     doi = {10.1017/fms.2019.43},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2019.43/}
}
TY  - JOUR
AU  - ANDREA LUCCHINI
AU  - CLAUDE MARION
AU  - GARETH TRACEY
TI  - GENERATING MAXIMAL SUBGROUPS OF FINITE ALMOST SIMPLE GROUPS
JO  - Forum of Mathematics, Sigma
PY  - 2020
VL  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2019.43/
DO  - 10.1017/fms.2019.43
LA  - en
ID  - 10_1017_fms_2019_43
ER  - 
%0 Journal Article
%A ANDREA LUCCHINI
%A CLAUDE MARION
%A GARETH TRACEY
%T GENERATING MAXIMAL SUBGROUPS OF FINITE ALMOST SIMPLE GROUPS
%J Forum of Mathematics, Sigma
%D 2020
%V 8
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2019.43/
%R 10.1017/fms.2019.43
%G en
%F 10_1017_fms_2019_43
ANDREA LUCCHINI; CLAUDE MARION; GARETH TRACEY. GENERATING MAXIMAL SUBGROUPS OF FINITE ALMOST SIMPLE GROUPS. Forum of Mathematics, Sigma, Tome 8 (2020). doi: 10.1017/fms.2019.43

Cité par Sources :