GENERATING MAXIMAL SUBGROUPS OF FINITE ALMOST SIMPLE GROUPS
Forum of Mathematics, Sigma, Tome 8 (2020)
Voir la notice de l'article provenant de la source Cambridge University Press
For a finite group $G$, let $d(G)$ denote the minimal number of elements required to generate $G$. In this paper, we prove sharp upper bounds on $d(H)$ whenever $H$ is a maximal subgroup of a finite almost simple group. In particular, we show that $d(H)\leqslant 5$ and that $d(H)\geqslant 4$ if and only if $H$ occurs in a known list. This improves a result of Burness, Liebeck and Shalev. The method involves the theory of crowns in finite groups.
@article{10_1017_fms_2019_43,
author = {ANDREA LUCCHINI and CLAUDE MARION and GARETH TRACEY},
title = {GENERATING {MAXIMAL} {SUBGROUPS} {OF} {FINITE} {ALMOST} {SIMPLE} {GROUPS}},
journal = {Forum of Mathematics, Sigma},
publisher = {mathdoc},
volume = {8},
year = {2020},
doi = {10.1017/fms.2019.43},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2019.43/}
}
TY - JOUR AU - ANDREA LUCCHINI AU - CLAUDE MARION AU - GARETH TRACEY TI - GENERATING MAXIMAL SUBGROUPS OF FINITE ALMOST SIMPLE GROUPS JO - Forum of Mathematics, Sigma PY - 2020 VL - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fms.2019.43/ DO - 10.1017/fms.2019.43 LA - en ID - 10_1017_fms_2019_43 ER -
%0 Journal Article %A ANDREA LUCCHINI %A CLAUDE MARION %A GARETH TRACEY %T GENERATING MAXIMAL SUBGROUPS OF FINITE ALMOST SIMPLE GROUPS %J Forum of Mathematics, Sigma %D 2020 %V 8 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1017/fms.2019.43/ %R 10.1017/fms.2019.43 %G en %F 10_1017_fms_2019_43
ANDREA LUCCHINI; CLAUDE MARION; GARETH TRACEY. GENERATING MAXIMAL SUBGROUPS OF FINITE ALMOST SIMPLE GROUPS. Forum of Mathematics, Sigma, Tome 8 (2020). doi: 10.1017/fms.2019.43
Cité par Sources :