EXISTENCE AND COMPACTNESS THEORY FOR ALE SCALAR-FLAT KÄHLER SURFACES
Forum of Mathematics, Sigma, Tome 8 (2020)

Voir la notice de l'article provenant de la source Cambridge University Press

Our main result in this article is a compactness result which states that a noncollapsed sequence of asymptotically locally Euclidean (ALE) scalar-flat Kähler metrics on a minimal Kähler surface whose Kähler classes stay in a compact subset of the interior of the Kähler cone must have a convergent subsequence. As an application, we prove the existence of global moduli spaces of scalar-flat Kähler ALE metrics for several infinite families of Kähler ALE spaces.
@article{10_1017_fms_2019_42,
     author = {JIYUAN HAN and JEFF A. VIACLOVSKY},
     title = {EXISTENCE {AND} {COMPACTNESS} {THEORY} {FOR} {ALE} {SCALAR-FLAT} {K\"AHLER} {SURFACES}},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {8},
     year = {2020},
     doi = {10.1017/fms.2019.42},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2019.42/}
}
TY  - JOUR
AU  - JIYUAN HAN
AU  - JEFF A. VIACLOVSKY
TI  - EXISTENCE AND COMPACTNESS THEORY FOR ALE SCALAR-FLAT KÄHLER SURFACES
JO  - Forum of Mathematics, Sigma
PY  - 2020
VL  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2019.42/
DO  - 10.1017/fms.2019.42
LA  - en
ID  - 10_1017_fms_2019_42
ER  - 
%0 Journal Article
%A JIYUAN HAN
%A JEFF A. VIACLOVSKY
%T EXISTENCE AND COMPACTNESS THEORY FOR ALE SCALAR-FLAT KÄHLER SURFACES
%J Forum of Mathematics, Sigma
%D 2020
%V 8
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2019.42/
%R 10.1017/fms.2019.42
%G en
%F 10_1017_fms_2019_42
JIYUAN HAN; JEFF A. VIACLOVSKY. EXISTENCE AND COMPACTNESS THEORY FOR ALE SCALAR-FLAT KÄHLER SURFACES. Forum of Mathematics, Sigma, Tome 8 (2020). doi: 10.1017/fms.2019.42

Cité par Sources :