EXISTENCE AND COMPACTNESS THEORY FOR ALE SCALAR-FLAT KÄHLER SURFACES
Forum of Mathematics, Sigma, Tome 8 (2020)
Voir la notice de l'article provenant de la source Cambridge University Press
Our main result in this article is a compactness result which states that a noncollapsed sequence of asymptotically locally Euclidean (ALE) scalar-flat Kähler metrics on a minimal Kähler surface whose Kähler classes stay in a compact subset of the interior of the Kähler cone must have a convergent subsequence. As an application, we prove the existence of global moduli spaces of scalar-flat Kähler ALE metrics for several infinite families of Kähler ALE spaces.
@article{10_1017_fms_2019_42,
author = {JIYUAN HAN and JEFF A. VIACLOVSKY},
title = {EXISTENCE {AND} {COMPACTNESS} {THEORY} {FOR} {ALE} {SCALAR-FLAT} {K\"AHLER} {SURFACES}},
journal = {Forum of Mathematics, Sigma},
publisher = {mathdoc},
volume = {8},
year = {2020},
doi = {10.1017/fms.2019.42},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2019.42/}
}
TY - JOUR AU - JIYUAN HAN AU - JEFF A. VIACLOVSKY TI - EXISTENCE AND COMPACTNESS THEORY FOR ALE SCALAR-FLAT KÄHLER SURFACES JO - Forum of Mathematics, Sigma PY - 2020 VL - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fms.2019.42/ DO - 10.1017/fms.2019.42 LA - en ID - 10_1017_fms_2019_42 ER -
JIYUAN HAN; JEFF A. VIACLOVSKY. EXISTENCE AND COMPACTNESS THEORY FOR ALE SCALAR-FLAT KÄHLER SURFACES. Forum of Mathematics, Sigma, Tome 8 (2020). doi: 10.1017/fms.2019.42
Cité par Sources :