COVER TIME FOR THE FROG MODEL ON TREES
Forum of Mathematics, Sigma, Tome 7 (2019)
Voir la notice de l'article provenant de la source Cambridge University Press
The frog model is a branching random walk on a graph in which particles branch only at unvisited sites. Consider an initial particle density of $\unicode[STIX]{x1D707}$ on the full $d$-ary tree of height $n$. If $\unicode[STIX]{x1D707}=\unicode[STIX]{x1D6FA}(d^{2})$, all of the vertices are visited in time $\unicode[STIX]{x1D6E9}(n\log n)$ with high probability. Conversely, if $\unicode[STIX]{x1D707}=O(d)$ the cover time is $\exp (\unicode[STIX]{x1D6E9}(\sqrt{n}))$ with high probability.
@article{10_1017_fms_2019_37,
author = {CHRISTOPHER HOFFMAN and TOBIAS JOHNSON and MATTHEW JUNGE},
title = {COVER {TIME} {FOR} {THE} {FROG} {MODEL} {ON} {TREES}},
journal = {Forum of Mathematics, Sigma},
publisher = {mathdoc},
volume = {7},
year = {2019},
doi = {10.1017/fms.2019.37},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2019.37/}
}
TY - JOUR AU - CHRISTOPHER HOFFMAN AU - TOBIAS JOHNSON AU - MATTHEW JUNGE TI - COVER TIME FOR THE FROG MODEL ON TREES JO - Forum of Mathematics, Sigma PY - 2019 VL - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fms.2019.37/ DO - 10.1017/fms.2019.37 LA - en ID - 10_1017_fms_2019_37 ER -
CHRISTOPHER HOFFMAN; TOBIAS JOHNSON; MATTHEW JUNGE. COVER TIME FOR THE FROG MODEL ON TREES. Forum of Mathematics, Sigma, Tome 7 (2019). doi: 10.1017/fms.2019.37
Cité par Sources :