COVER TIME FOR THE FROG MODEL ON TREES
Forum of Mathematics, Sigma, Tome 7 (2019)

Voir la notice de l'article provenant de la source Cambridge University Press

The frog model is a branching random walk on a graph in which particles branch only at unvisited sites. Consider an initial particle density of $\unicode[STIX]{x1D707}$ on the full $d$-ary tree of height $n$. If $\unicode[STIX]{x1D707}=\unicode[STIX]{x1D6FA}(d^{2})$, all of the vertices are visited in time $\unicode[STIX]{x1D6E9}(n\log n)$ with high probability. Conversely, if $\unicode[STIX]{x1D707}=O(d)$ the cover time is $\exp (\unicode[STIX]{x1D6E9}(\sqrt{n}))$ with high probability.
@article{10_1017_fms_2019_37,
     author = {CHRISTOPHER HOFFMAN and TOBIAS JOHNSON and MATTHEW JUNGE},
     title = {COVER {TIME} {FOR} {THE} {FROG} {MODEL} {ON} {TREES}},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {7},
     year = {2019},
     doi = {10.1017/fms.2019.37},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2019.37/}
}
TY  - JOUR
AU  - CHRISTOPHER HOFFMAN
AU  - TOBIAS JOHNSON
AU  - MATTHEW JUNGE
TI  - COVER TIME FOR THE FROG MODEL ON TREES
JO  - Forum of Mathematics, Sigma
PY  - 2019
VL  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2019.37/
DO  - 10.1017/fms.2019.37
LA  - en
ID  - 10_1017_fms_2019_37
ER  - 
%0 Journal Article
%A CHRISTOPHER HOFFMAN
%A TOBIAS JOHNSON
%A MATTHEW JUNGE
%T COVER TIME FOR THE FROG MODEL ON TREES
%J Forum of Mathematics, Sigma
%D 2019
%V 7
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2019.37/
%R 10.1017/fms.2019.37
%G en
%F 10_1017_fms_2019_37
CHRISTOPHER HOFFMAN; TOBIAS JOHNSON; MATTHEW JUNGE. COVER TIME FOR THE FROG MODEL ON TREES. Forum of Mathematics, Sigma, Tome 7 (2019). doi: 10.1017/fms.2019.37

Cité par Sources :