YANG–BAXTER FIELD FOR SPIN HALL–LITTLEWOOD SYMMETRIC FUNCTIONS
Forum of Mathematics, Sigma, Tome 7 (2019)
Voir la notice de l'article provenant de la source Cambridge University Press
Employing bijectivization of summation identities, we introduce local stochastic moves based on the Yang–Baxter equation for $U_{q}(\widehat{\mathfrak{sl}_{2}})$. Combining these moves leads to a new object which we call the spin Hall–Littlewood Yang–Baxter field—a probability distribution on two-dimensional arrays of particle configurations on the discrete line. We identify joint distributions along down-right paths in the Yang–Baxter field with spin Hall–Littlewood processes, a generalization of Schur processes. We consider various degenerations of the Yang–Baxter field leading to new dynamic versions of the stochastic six-vertex model and of the Asymmetric Simple Exclusion Process.
@article{10_1017_fms_2019_36,
author = {ALEXEY BUFETOV and LEONID PETROV},
title = {YANG{\textendash}BAXTER {FIELD} {FOR} {SPIN} {HALL{\textendash}LITTLEWOOD} {SYMMETRIC} {FUNCTIONS}},
journal = {Forum of Mathematics, Sigma},
publisher = {mathdoc},
volume = {7},
year = {2019},
doi = {10.1017/fms.2019.36},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2019.36/}
}
TY - JOUR AU - ALEXEY BUFETOV AU - LEONID PETROV TI - YANG–BAXTER FIELD FOR SPIN HALL–LITTLEWOOD SYMMETRIC FUNCTIONS JO - Forum of Mathematics, Sigma PY - 2019 VL - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fms.2019.36/ DO - 10.1017/fms.2019.36 LA - en ID - 10_1017_fms_2019_36 ER -
ALEXEY BUFETOV; LEONID PETROV. YANG–BAXTER FIELD FOR SPIN HALL–LITTLEWOOD SYMMETRIC FUNCTIONS. Forum of Mathematics, Sigma, Tome 7 (2019). doi: 10.1017/fms.2019.36
Cité par Sources :