ON TORUS ACTIONS OF HIGHER COMPLEXITY
    
    
  
  
  
      
      
      
        
Forum of Mathematics, Sigma, Tome 7 (2019)
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Cambridge University Press
            
              We systematically produce algebraic varieties with torus action by constructing them as suitably embedded subvarieties of toric varieties. The resulting varieties admit an explicit treatment in terms of toric geometry and graded ring theory. Our approach extends existing constructions of rational varieties with torus action of complexity one and delivers all Mori dream spaces with torus action. We exhibit the example class of ‘general arrangement varieties’ and obtain classification results in the case of complexity two and Picard number at most two, extending former work in complexity one.
            
            
            
          
        
      @article{10_1017_fms_2019_35,
     author = {J\"URGEN HAUSEN and CHRISTOFF HISCHE and MILENA WROBEL},
     title = {ON {TORUS} {ACTIONS} {OF} {HIGHER} {COMPLEXITY}},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {7},
     year = {2019},
     doi = {10.1017/fms.2019.35},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2019.35/}
}
                      
                      
                    TY - JOUR AU - JÜRGEN HAUSEN AU - CHRISTOFF HISCHE AU - MILENA WROBEL TI - ON TORUS ACTIONS OF HIGHER COMPLEXITY JO - Forum of Mathematics, Sigma PY - 2019 VL - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fms.2019.35/ DO - 10.1017/fms.2019.35 LA - en ID - 10_1017_fms_2019_35 ER -
JÜRGEN HAUSEN; CHRISTOFF HISCHE; MILENA WROBEL. ON TORUS ACTIONS OF HIGHER COMPLEXITY. Forum of Mathematics, Sigma, Tome 7 (2019). doi: 10.1017/fms.2019.35
Cité par Sources :