NORMAL FUNCTIONS FOR ALGEBRAICALLY TRIVIAL CYCLES ARE ALGEBRAIC FOR ARITHMETIC REASONS
Forum of Mathematics, Sigma, Tome 7 (2019)

Voir la notice de l'article provenant de la source Cambridge University Press

For families of smooth complex projective varieties, we show that normal functions arising from algebraically trivial cycle classes are algebraic and defined over the field of definition of the family. In particular, the zero loci of those functions are algebraic and defined over such a field of definition. This proves a conjecture of Charles.
@article{10_1017_fms_2019_34,
     author = {JEFFREY D. ACHTER and SEBASTIAN CASALAINA-MARTIN and CHARLES VIAL},
     title = {NORMAL {FUNCTIONS} {FOR} {ALGEBRAICALLY} {TRIVIAL} {CYCLES} {ARE} {ALGEBRAIC} {FOR} {ARITHMETIC} {REASONS}},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {7},
     year = {2019},
     doi = {10.1017/fms.2019.34},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2019.34/}
}
TY  - JOUR
AU  - JEFFREY D. ACHTER
AU  - SEBASTIAN CASALAINA-MARTIN
AU  - CHARLES VIAL
TI  - NORMAL FUNCTIONS FOR ALGEBRAICALLY TRIVIAL CYCLES ARE ALGEBRAIC FOR ARITHMETIC REASONS
JO  - Forum of Mathematics, Sigma
PY  - 2019
VL  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2019.34/
DO  - 10.1017/fms.2019.34
LA  - en
ID  - 10_1017_fms_2019_34
ER  - 
%0 Journal Article
%A JEFFREY D. ACHTER
%A SEBASTIAN CASALAINA-MARTIN
%A CHARLES VIAL
%T NORMAL FUNCTIONS FOR ALGEBRAICALLY TRIVIAL CYCLES ARE ALGEBRAIC FOR ARITHMETIC REASONS
%J Forum of Mathematics, Sigma
%D 2019
%V 7
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2019.34/
%R 10.1017/fms.2019.34
%G en
%F 10_1017_fms_2019_34
JEFFREY D. ACHTER; SEBASTIAN CASALAINA-MARTIN; CHARLES VIAL. NORMAL FUNCTIONS FOR ALGEBRAICALLY TRIVIAL CYCLES ARE ALGEBRAIC FOR ARITHMETIC REASONS. Forum of Mathematics, Sigma, Tome 7 (2019). doi: 10.1017/fms.2019.34

Cité par Sources :