CUTTING A PART FROM MANY MEASURES
Forum of Mathematics, Sigma, Tome 7 (2019)
Voir la notice de l'article provenant de la source Cambridge University Press
Holmsen, Kynčl and Valculescu recently conjectured that if a finite set $X$ with $\ell n$ points in $\mathbb{R}^{d}$ that is colored by $m$ different colors can be partitioned into $n$ subsets of $\ell$ points each, such that each subset contains points of at least $d$ different colors, then there exists such a partition of $X$ with the additional property that the convex hulls of the $n$ subsets are pairwise disjoint.We prove a continuous analogue of this conjecture, generalized so that each subset contains points of at least $c$ different colors, where we also allow $c$ to be greater than $d$. Furthermore, we give lower bounds on the fraction of the points each of the subsets contains from $c$ different colors. For example, when $n\geqslant 2$, $d\geqslant 2$, $c\geqslant d$ with $m\geqslant n(c-d)+d$ are integers, and $\unicode[STIX]{x1D707}_{1},\ldots ,\unicode[STIX]{x1D707}_{m}$ are $m$ positive finite absolutely continuous measures on $\mathbb{R}^{d}$, we prove that there exists a partition of $\mathbb{R}^{d}$ into $n$ convex pieces which equiparts the measures $\unicode[STIX]{x1D707}_{1},\ldots ,\unicode[STIX]{x1D707}_{d-1}$, and in addition every piece of the partition has positive measure with respect to at least $c$ of the measures $\unicode[STIX]{x1D707}_{1},\ldots ,\unicode[STIX]{x1D707}_{m}$.
@article{10_1017_fms_2019_33,
author = {PAVLE V. M. BLAGOJEVI\'C and NEVENA PALI\'C and PABLO SOBER\'ON and G\"UNTER M. ZIEGLER},
title = {CUTTING {A} {PART} {FROM} {MANY} {MEASURES}},
journal = {Forum of Mathematics, Sigma},
publisher = {mathdoc},
volume = {7},
year = {2019},
doi = {10.1017/fms.2019.33},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2019.33/}
}
TY - JOUR AU - PAVLE V. M. BLAGOJEVIĆ AU - NEVENA PALIĆ AU - PABLO SOBERÓN AU - GÜNTER M. ZIEGLER TI - CUTTING A PART FROM MANY MEASURES JO - Forum of Mathematics, Sigma PY - 2019 VL - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fms.2019.33/ DO - 10.1017/fms.2019.33 LA - en ID - 10_1017_fms_2019_33 ER -
%0 Journal Article %A PAVLE V. M. BLAGOJEVIĆ %A NEVENA PALIĆ %A PABLO SOBERÓN %A GÜNTER M. ZIEGLER %T CUTTING A PART FROM MANY MEASURES %J Forum of Mathematics, Sigma %D 2019 %V 7 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1017/fms.2019.33/ %R 10.1017/fms.2019.33 %G en %F 10_1017_fms_2019_33
PAVLE V. M. BLAGOJEVIĆ; NEVENA PALIĆ; PABLO SOBERÓN; GÜNTER M. ZIEGLER. CUTTING A PART FROM MANY MEASURES. Forum of Mathematics, Sigma, Tome 7 (2019). doi: 10.1017/fms.2019.33
Cité par Sources :