CUTTING A PART FROM MANY MEASURES
Forum of Mathematics, Sigma, Tome 7 (2019)

Voir la notice de l'article provenant de la source Cambridge University Press

Holmsen, Kynčl and Valculescu recently conjectured that if a finite set $X$ with $\ell n$ points in $\mathbb{R}^{d}$ that is colored by $m$ different colors can be partitioned into $n$ subsets of $\ell$ points each, such that each subset contains points of at least $d$ different colors, then there exists such a partition of $X$ with the additional property that the convex hulls of the $n$ subsets are pairwise disjoint.We prove a continuous analogue of this conjecture, generalized so that each subset contains points of at least $c$ different colors, where we also allow $c$ to be greater than $d$. Furthermore, we give lower bounds on the fraction of the points each of the subsets contains from $c$ different colors. For example, when $n\geqslant 2$, $d\geqslant 2$, $c\geqslant d$ with $m\geqslant n(c-d)+d$ are integers, and $\unicode[STIX]{x1D707}_{1},\ldots ,\unicode[STIX]{x1D707}_{m}$ are $m$ positive finite absolutely continuous measures on $\mathbb{R}^{d}$, we prove that there exists a partition of $\mathbb{R}^{d}$ into $n$ convex pieces which equiparts the measures $\unicode[STIX]{x1D707}_{1},\ldots ,\unicode[STIX]{x1D707}_{d-1}$, and in addition every piece of the partition has positive measure with respect to at least $c$ of the measures $\unicode[STIX]{x1D707}_{1},\ldots ,\unicode[STIX]{x1D707}_{m}$.
@article{10_1017_fms_2019_33,
     author = {PAVLE V. M. BLAGOJEVI\'C and NEVENA PALI\'C and PABLO SOBER\'ON and G\"UNTER M. ZIEGLER},
     title = {CUTTING {A} {PART} {FROM} {MANY} {MEASURES}},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {7},
     year = {2019},
     doi = {10.1017/fms.2019.33},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2019.33/}
}
TY  - JOUR
AU  - PAVLE V. M. BLAGOJEVIĆ
AU  - NEVENA PALIĆ
AU  - PABLO SOBERÓN
AU  - GÜNTER M. ZIEGLER
TI  - CUTTING A PART FROM MANY MEASURES
JO  - Forum of Mathematics, Sigma
PY  - 2019
VL  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2019.33/
DO  - 10.1017/fms.2019.33
LA  - en
ID  - 10_1017_fms_2019_33
ER  - 
%0 Journal Article
%A PAVLE V. M. BLAGOJEVIĆ
%A NEVENA PALIĆ
%A PABLO SOBERÓN
%A GÜNTER M. ZIEGLER
%T CUTTING A PART FROM MANY MEASURES
%J Forum of Mathematics, Sigma
%D 2019
%V 7
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2019.33/
%R 10.1017/fms.2019.33
%G en
%F 10_1017_fms_2019_33
PAVLE V. M. BLAGOJEVIĆ; NEVENA PALIĆ; PABLO SOBERÓN; GÜNTER M. ZIEGLER. CUTTING A PART FROM MANY MEASURES. Forum of Mathematics, Sigma, Tome 7 (2019). doi: 10.1017/fms.2019.33

Cité par Sources :