LOGARITHMIC DE RHAM COMPARISON FOR OPEN RIGID SPACES
Forum of Mathematics, Sigma, Tome 7 (2019)

Voir la notice de l'article provenant de la source Cambridge University Press

In this note, we prove the logarithmic $p$-adic comparison theorem for open rigid analytic varieties. We prove that a smooth rigid analytic variety with a strict simple normal crossing divisor is locally $K(\unicode[STIX]{x1D70B},1)$ (in a certain sense) with respect to $\mathbb{F}_{p}$-local systems and ramified coverings along the divisor. We follow Scholze’s method to produce a pro-version of the Faltings site and use this site to prove a primitive comparison theorem in our setting. After introducing period sheaves in our setting, we prove aforesaid comparison theorem.
@article{10_1017_fms_2019_27,
     author = {SHIZHANG LI and XUANYU PAN},
     title = {LOGARITHMIC {DE} {RHAM} {COMPARISON} {FOR} {OPEN} {RIGID} {SPACES}},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {7},
     year = {2019},
     doi = {10.1017/fms.2019.27},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2019.27/}
}
TY  - JOUR
AU  - SHIZHANG LI
AU  - XUANYU PAN
TI  - LOGARITHMIC DE RHAM COMPARISON FOR OPEN RIGID SPACES
JO  - Forum of Mathematics, Sigma
PY  - 2019
VL  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2019.27/
DO  - 10.1017/fms.2019.27
LA  - en
ID  - 10_1017_fms_2019_27
ER  - 
%0 Journal Article
%A SHIZHANG LI
%A XUANYU PAN
%T LOGARITHMIC DE RHAM COMPARISON FOR OPEN RIGID SPACES
%J Forum of Mathematics, Sigma
%D 2019
%V 7
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2019.27/
%R 10.1017/fms.2019.27
%G en
%F 10_1017_fms_2019_27
SHIZHANG LI; XUANYU PAN. LOGARITHMIC DE RHAM COMPARISON FOR OPEN RIGID SPACES. Forum of Mathematics, Sigma, Tome 7 (2019). doi: 10.1017/fms.2019.27

Cité par Sources :