CATEGORIFYING RATIONALIZATION
Forum of Mathematics, Sigma, Tome 7 (2019)

Voir la notice de l'article provenant de la source Cambridge University Press

We construct, for any set of primes $S$, a triangulated category (in fact a stable $\infty$-category) whose Grothendieck group is $S^{-1}\mathbf{Z}$. More generally, for any exact $\infty$-category $E$, we construct an exact $\infty$-category $S^{-1}E$ of equivariant sheaves on the Cantor space with respect to an action of a dense subgroup of the circle. We show that this $\infty$-category is precisely the result of categorifying division by the primes in $S$. In particular, $K_{n}(S^{-1}E)\cong S^{-1}K_{n}(E)$.
@article{10_1017_fms_2019_26,
     author = {CLARK BARWICK and SAUL GLASMAN and MARC HOYOIS and DENIS NARDIN and JAY SHAH},
     title = {CATEGORIFYING {RATIONALIZATION}},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {7},
     year = {2019},
     doi = {10.1017/fms.2019.26},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2019.26/}
}
TY  - JOUR
AU  - CLARK BARWICK
AU  - SAUL GLASMAN
AU  - MARC HOYOIS
AU  - DENIS NARDIN
AU  - JAY SHAH
TI  - CATEGORIFYING RATIONALIZATION
JO  - Forum of Mathematics, Sigma
PY  - 2019
VL  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2019.26/
DO  - 10.1017/fms.2019.26
LA  - en
ID  - 10_1017_fms_2019_26
ER  - 
%0 Journal Article
%A CLARK BARWICK
%A SAUL GLASMAN
%A MARC HOYOIS
%A DENIS NARDIN
%A JAY SHAH
%T CATEGORIFYING RATIONALIZATION
%J Forum of Mathematics, Sigma
%D 2019
%V 7
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2019.26/
%R 10.1017/fms.2019.26
%G en
%F 10_1017_fms_2019_26
CLARK BARWICK; SAUL GLASMAN; MARC HOYOIS; DENIS NARDIN; JAY SHAH. CATEGORIFYING RATIONALIZATION. Forum of Mathematics, Sigma, Tome 7 (2019). doi: 10.1017/fms.2019.26

Cité par Sources :