RANDOM MATRICES WITH SLOW CORRELATION DECAY
    
    
  
  
  
      
      
      
        
Forum of Mathematics, Sigma, Tome 7 (2019)
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Cambridge University Press
            
              We consider large random matrices with a general slowly decaying correlation among its entries. We prove universality of the local eigenvalue statistics and optimal local laws for the resolvent away from the spectral edges, generalizing the recent result of Ajanki et al. [‘Stability of the matrix Dyson equation and random matrices with correlations’, Probab. Theory Related Fields173(1–2) (2019), 293–373] to allow slow correlation decay and arbitrary expectation. The main novel tool is a systematic diagrammatic control of a multivariate cumulant expansion.
            
            
            
          
        
      @article{10_1017_fms_2019_2,
     author = {L\'ASZL\'O ERD\H{O}S and TORBEN KR\"UGER and DOMINIK SCHR\"ODER},
     title = {RANDOM {MATRICES} {WITH} {SLOW} {CORRELATION} {DECAY}},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {7},
     year = {2019},
     doi = {10.1017/fms.2019.2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2019.2/}
}
                      
                      
                    TY - JOUR AU - LÁSZLÓ ERDŐS AU - TORBEN KRÜGER AU - DOMINIK SCHRÖDER TI - RANDOM MATRICES WITH SLOW CORRELATION DECAY JO - Forum of Mathematics, Sigma PY - 2019 VL - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fms.2019.2/ DO - 10.1017/fms.2019.2 LA - en ID - 10_1017_fms_2019_2 ER -
LÁSZLÓ ERDŐS; TORBEN KRÜGER; DOMINIK SCHRÖDER. RANDOM MATRICES WITH SLOW CORRELATION DECAY. Forum of Mathematics, Sigma, Tome 7 (2019). doi: 10.1017/fms.2019.2
Cité par Sources :