GENERIC UNLABELED GLOBAL RIGIDITY
Forum of Mathematics, Sigma, Tome 7 (2019)

Voir la notice de l'article provenant de la source Cambridge University Press

Let $\mathbf{p}$ be a configuration of $n$ points in $\mathbb{R}^{d}$ for some $n$ and some $d\geqslant 2$. Each pair of points has a Euclidean distance in the configuration. Given some graph $G$ on $n$ vertices, we measure the point-pair distances corresponding to the edges of $G$. In this paper, we study the question of when a generic $\mathbf{p}$ in $d$ dimensions will be uniquely determined (up to an unknowable Euclidean transformation) from a given set of point-pair distances together with knowledge of $d$ and $n$. In this setting the distances are given simply as a set of real numbers; they are not labeled with the combinatorial data that describes which point pair gave rise to which distance, nor is data about $G$ given. We show, perhaps surprisingly, that in terms of generic uniqueness, labels have no effect. A generic configuration is determined by an unlabeled set of point-pair distances (together with $d$ and $n$) if and only if it is determined by the labeled distances.
@article{10_1017_fms_2019_16,
     author = {STEVEN J. GORTLER and LOUIS THERAN and DYLAN P. THURSTON},
     title = {GENERIC {UNLABELED} {GLOBAL} {RIGIDITY}},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {7},
     year = {2019},
     doi = {10.1017/fms.2019.16},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2019.16/}
}
TY  - JOUR
AU  - STEVEN J. GORTLER
AU  - LOUIS THERAN
AU  - DYLAN P. THURSTON
TI  - GENERIC UNLABELED GLOBAL RIGIDITY
JO  - Forum of Mathematics, Sigma
PY  - 2019
VL  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2019.16/
DO  - 10.1017/fms.2019.16
LA  - en
ID  - 10_1017_fms_2019_16
ER  - 
%0 Journal Article
%A STEVEN J. GORTLER
%A LOUIS THERAN
%A DYLAN P. THURSTON
%T GENERIC UNLABELED GLOBAL RIGIDITY
%J Forum of Mathematics, Sigma
%D 2019
%V 7
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2019.16/
%R 10.1017/fms.2019.16
%G en
%F 10_1017_fms_2019_16
STEVEN J. GORTLER; LOUIS THERAN; DYLAN P. THURSTON. GENERIC UNLABELED GLOBAL RIGIDITY. Forum of Mathematics, Sigma, Tome 7 (2019). doi: 10.1017/fms.2019.16

Cité par Sources :