A FILTRATION ON EQUIVARIANT BOREL–MOORE HOMOLOGY
    
    
  
  
  
      
      
      
        
Forum of Mathematics, Sigma, Tome 7 (2019)
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Cambridge University Press
            
              Let $G/H$ be a homogeneous variety and let $X$ be a $G$-equivariant embedding of $G/H$ such that the number of $G$-orbits in $X$ is finite. We show that the equivariant Borel–Moore homology of $X$ has a filtration with associated graded module the direct sum of the equivariant Borel–Moore homologies of the $G$-orbits. If $T$ is a maximal torus of $G$ such that each $G$-orbit has a $T$-fixed point, then the equivariant filtration descends to give a filtration on the ordinary Borel–Moore homology of $X$. We apply our findings to certain wonderful compactifications as well as to double flag varieties.
            
            
            
          
        
      @article{10_1017_fms_2019_15,
     author = {ARAM BINGHAM and MAHIR BILEN CAN and YILDIRAY OZAN},
     title = {A {FILTRATION} {ON} {EQUIVARIANT} {BOREL{\textendash}MOORE} {HOMOLOGY}},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {7},
     year = {2019},
     doi = {10.1017/fms.2019.15},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2019.15/}
}
                      
                      
                    TY - JOUR AU - ARAM BINGHAM AU - MAHIR BILEN CAN AU - YILDIRAY OZAN TI - A FILTRATION ON EQUIVARIANT BOREL–MOORE HOMOLOGY JO - Forum of Mathematics, Sigma PY - 2019 VL - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fms.2019.15/ DO - 10.1017/fms.2019.15 LA - en ID - 10_1017_fms_2019_15 ER -
ARAM BINGHAM; MAHIR BILEN CAN; YILDIRAY OZAN. A FILTRATION ON EQUIVARIANT BOREL–MOORE HOMOLOGY. Forum of Mathematics, Sigma, Tome 7 (2019). doi: 10.1017/fms.2019.15
Cité par Sources :