A FILTRATION ON EQUIVARIANT BOREL–MOORE HOMOLOGY
Forum of Mathematics, Sigma, Tome 7 (2019)

Voir la notice de l'article provenant de la source Cambridge University Press

Let $G/H$ be a homogeneous variety and let $X$ be a $G$-equivariant embedding of $G/H$ such that the number of $G$-orbits in $X$ is finite. We show that the equivariant Borel–Moore homology of $X$ has a filtration with associated graded module the direct sum of the equivariant Borel–Moore homologies of the $G$-orbits. If $T$ is a maximal torus of $G$ such that each $G$-orbit has a $T$-fixed point, then the equivariant filtration descends to give a filtration on the ordinary Borel–Moore homology of $X$. We apply our findings to certain wonderful compactifications as well as to double flag varieties.
@article{10_1017_fms_2019_15,
     author = {ARAM BINGHAM and MAHIR BILEN CAN and YILDIRAY OZAN},
     title = {A {FILTRATION} {ON} {EQUIVARIANT} {BOREL{\textendash}MOORE} {HOMOLOGY}},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {7},
     year = {2019},
     doi = {10.1017/fms.2019.15},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2019.15/}
}
TY  - JOUR
AU  - ARAM BINGHAM
AU  - MAHIR BILEN CAN
AU  - YILDIRAY OZAN
TI  - A FILTRATION ON EQUIVARIANT BOREL–MOORE HOMOLOGY
JO  - Forum of Mathematics, Sigma
PY  - 2019
VL  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2019.15/
DO  - 10.1017/fms.2019.15
LA  - en
ID  - 10_1017_fms_2019_15
ER  - 
%0 Journal Article
%A ARAM BINGHAM
%A MAHIR BILEN CAN
%A YILDIRAY OZAN
%T A FILTRATION ON EQUIVARIANT BOREL–MOORE HOMOLOGY
%J Forum of Mathematics, Sigma
%D 2019
%V 7
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2019.15/
%R 10.1017/fms.2019.15
%G en
%F 10_1017_fms_2019_15
ARAM BINGHAM; MAHIR BILEN CAN; YILDIRAY OZAN. A FILTRATION ON EQUIVARIANT BOREL–MOORE HOMOLOGY. Forum of Mathematics, Sigma, Tome 7 (2019). doi: 10.1017/fms.2019.15

Cité par Sources :